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ABSTRACT
PyTorch has profoundly impacted the machine learning (ML) com-
munity by allowing researchers of all backgrounds to train models
efficiently. While PyTorch is the de facto standard in ML, the evolu-
tionary algorithms (EA) community instead relies onmany different
libraries, each with low adoption in practice. In an effort to provide
a standardized library for EA, packages like LEAP and PyGAD have
been developed. However, these libraries fall short in either scal-
ability or usability. In particular, neither of these packages offers
efficient support for neuroevolutionary tasks. We argue that the
best way to develop a PyTorch-like library for EAs is to build on
the already solid foundation of PyTorch itself. We present Gaggle,
an efficient PyTorch-based EA library that better supports GPU-
based tasks like neuroevolution while maintaining the efficiency of
CPU-based problems. We evaluate Gaggle on various problems and
find statistically significant improvements in runtime over prior
work on problems like training neural networks. In addition to
efficiency, Gaggle provides a simple single-line interface making it
accessible to beginners and a more customizable research interface
with detailed configuration files to better support the EA research
community.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • Computing methodologies→ Genetic algorithms.
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1 INTRODUCTION
An essential tool for rapid research development is an efficient and
flexible software library to evaluate new algorithms. PyTorch [5] is
the most prominent example of how a software library can have a
profound effect on the research community. PyTorch allows for the
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rapid prototyping of machine learning algorithms with an extensive
library of highly optimized tensor-based operations. As faster GPUs
become more accessible, PyTorch enables users of all skill sets to
train large models in minutes on the GPU. PyTorch is also highly
portable due to the high demand for supporting new architectures.

A recent line of work from the evolutionary algorithm (EA) com-
munity has focused on designing a tool with the same modularity
and usability of PyTorch [3, 9]. This line of work is motivated by
the many disjoint implementations of EAs with low adoption in
practice. One of the most prominent works that aims to be the
PyTorch of EAs is LEAP [3]. LEAP is a highly optimized CPU-based
EA library with a functional programming design. LEAP allows
researchers to easily modify the EA pipeline by swapping evolution-
ary operators, taking measurements, and deploying their work to
high-performance computing architectures. Despite LEAP’s modu-
lar design, implementing new problems is challenging due to the
many layers of abstraction within the package. Specifically, we
found implementing problems like neuroevolution (where LEAP
and PyTorch need to work together) particularly difficult.

The most widely used EA software library is PyGAD, with nearly
a million pip installs [6]. The greatest strength of PyGAD is that it
has allowed users with little to no background to solve problems and
gain experience with EAs. Themost significant drawback of PyGAD
is its scalability, as demonstrated in our evaluation. Furthermore,
it is hard to modify due to its reliance on global variables and lack
of modularity. However, PyGAD does support neuroevolutionary
tasks using a PyTorch wrapper. This wrapper converts PyTorch
models to Numpy arrays and vice versa, with all EA operations
happening in Numpy. The problem with a conversion approach is
the overhead of constantly moving ML models on and off the GPU.

Motivated by the strengths and weaknesses of both LEAP and
PyGAD, we develop a new software library called Gaggle1. Gaggle
uses PyTorch as the backend for several reasons. First, we argue
the best way to get a PyTorch like library for EAs is to build on the
already solid foundation of PyTorch itself. Using PyTorch makes
it much easier and faster to support EAs whose fitness function
relies on PyTorch models in any way. Our evaluation shows that
Gaggle consistently outperforms both LEAP and PyGAD in time per
generation with statistical significance (up to 9.7x) when evolving
neural networks. Finally, the efficiency of PyTorch allows us to be
competitive with LEAP even on CPU-only tasks such as Rastrigin,
matching their scalability up to a tenth of a second constant factor.

In addition to the significant performance improvements, we
design Gaggle with usability in mind. Inspired by LEAP, we use
a modular design making it simple to configure different combi-
nations of evolutionary operators to create different algorithms.
Gaggle uses an object-orientated design that makes it easy for
researchers to implement new behaviours by inheriting existing

1https://github.com/LucasFenaux/torch-gaggle
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functionality from the built-in objects. Furthermore, we adopt the
factory pattern from object-orientated design to allow all aspects of
the algorithm to be specified in a configuration file. Configuration
files specifying all parameters used in an experiment are an essential
tool for reproducibility and efficiency in research experimentation.
Finally, inspired by PyGAD, we also maintain a simple interface for
beginners by offering a GA supervisor object that gives access to
most features of Gaggle in a single line of code.

2 DESIGN
2.1 Package Overview
Gaggle follows an object-orientated design with a pyramid-like
structure. At the top is the GA object, representing the high level
type of EA (e.g. simple, steady-state). This object takes all other
objects in its constructor and defines how they interact with each
other (and when to call each operator). Put another way; the GA
object is analogous to the trainer object that can be found in many
PyTorch libraries. We describe in more detail the three core com-
ponents of the GA: the Population Manager, Problem object and
Operator objects.

PopulationManager. The populationmanager acts as the primary
data structure for the GA. It stores and manages all the individuals
keeping track of their fitness. To avoid wasteful computation, we op-
tionally keep track of an individual’s freshness and only recompute
its fitness if it was modified since its fitness was last computed. The
Population Manager also provides a standardized interface for the
evolutionary operators to access and update individuals. It stores all
the individual-related meta-information required for the operators,
such as which parents have been chosen, which individuals will be
crossed over etc. This simplifies the operator pipeline by avoiding
the need for operators to interface with each other directly.

Operators. Operators are highly cohesive objects representing
the basic operations that make a GA: selection, crossover, and
mutation. We include a selection of the most common operators,
such as uniform crossover, roulette wheel selection and Gaussian
mutation. Due to Gaggle’s PyTorch backend, it is also simple and
efficient to add more complex operators, such as SGD, for a local
improvement operator to create a hybrid GA.

Problem. A problem object encompasses everything about the
fitness function the GA optimizes. This can be a simple benchmark
function such as Rastrigin, or more complex problems such as
neural network training and reinforcement learning. The problem
object’s main purpose is to evaluate an individual and return its
fitness to the population manager. The problem object can also
store objects like datasets, PyTorch models, and RL environments.
We also provide direct support for LEAP problems and the OpenAI
Gym suite for RL problems.

Customization. Due to Gaggle’s high-cohesion, low-coupling
object-oriented design, it is straightforward for researchers to mod-
ify all parts of the code with little to no downstream effects. Regis-
tering these modifications in Gaggle’s factories takes a single line
(see Listing 1 for an example). Once registered, Gaggle allows cus-
tom code to be invoked using its pre-built configuration file system
for simple and reproducible research code.

1 # creating the problem

2 class MaxOnesProblem(Problem):

3 def evaluate(self , individual: Individual , *args ,

** kwargs) -> float:

4 chromosome = individual ()

5 return torch.sum(chromosome).cpu().item()

6 #register the problem in the factory

7 ProblemFactory.register_problem(

8 problem_type='custom ', problem_name='maxones ',

problem=MaxOnesProblem)

9 # parse args

10 outdir_args , sys_args , individual_args , problem_args ,

ga_args , config_args = parse_args ()

11 # if config file is specified , overwrite arguments

12 if config_args.exists ():

13 outdir_args , sys_args , individual_args ,

problem_args , ga_args = config_args.get_args ()

14 # run

15 trainer: GA = GAFactory.from_ga_args(ga_args=ga_args ,

problem_args=problem_args , sys_args=sys_args ,

outdir_args=outdir_args , individual_args=

individual_args)

16 trainer.train()

17

Listing 1: Creating and registering a custom problem
(MaxOnes) to be used with our configuration file system.

1 GASupervisor(problem_name="MNIST", individual_name="nn",

2 model_name="lenet", device="cuda").run()

Listing 2: Example of using the GA Supervisor for a pre-built
problem

1 def fitness_function(individual):

2 chromosome = individual ()

3 genome_size = individual.get_genome_size ()

4 rastrigin = - (10 * genome_size + torch.sum(

chromosome ** 2 - 10 * torch.cos(2 * torch.pi *

chromosome)))

5 return rastrigin.cpu().item()

6

7 supervisor = GASupervisor(individual_name="pytorch",

8 individual_size =100)

9 supervisor.set_custom_fitness(fitness_function)

10 supervisor.run()

Listing 3: Example of using the GA Supervisor for a custom
fitness function (Rastrigin)

2.2 Configuring the GA
GA supervisor. To facilitate fast implementation and to make

Gaggle accessible to beginners, we include a GA supervisor class.
This class gives a single-line interface to our system. At minimum,
a user needs to specify which problem they want to solve and
some arguments, as shown in Listing 2. However, we also allow for
customization by passing functions or new operators. For example,
if we want to code the Rastrigin problem, we could pass a custom
function as in Listing 3.

Research Mode. The default usage of our code is research mode,
which uses a similar design to PyTorch, where one assembles a GA
by initializing the various objects and connecting them. One of the
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most important differences between this and the GA supervisor is
the ability to use config files for reproducibility and organization of
experiment code. Our argument parser allows for either command
line arguments or a standard yml file. We give an example usage
that includes defining a custom problem in Listing 1.

3 RELATEDWORK
We focus our evaluation on the LEAP [3] and PyGAD [6] libraries.
LEAP is the current state-of-the-art Python library for features
and usability, while PyGAD is the most popular, with almost a
million pip installs. We defer to the LEAP paper for a complete
list of previous Python libraries. We are the first library to focus
on both usability and GPU acceleration. JEGA is a new Java-based
framework with many design goals in common with our work,
including speed, modularity, and portability [9]. However, using
PyTorch allows us to better meet these design goals while offering
seamless support of neuroevolution.

Speeding up evolutionary algorithms using the GPU is not a
new idea. Cheng and Gen give an extensive survey of various at-
tempts [2]. Gaggle complements these works by making it easier to
utilize the GPU for several reasons. First, Gaggle’s PyTorch backend
makes using the GPU as simple as setting the device (assuming the
operations would benefit from the GPU). Using PyTorch also gives
flexible deployment options to various architectures and access to
extensive documentation from the wider ML community. Klosko et
al. recently proposed accelerating evolutionary operators by mak-
ing them more amenable to tensors [7]. Gaggle complements this
work by offering a user-friendly tensor-based EA implementation
upon which Klosko et al.’s operators can easily be implemented.
We focus on the initial package in this work, but adding further
optimizations such as Klosko et al.’s is an important future work.

4 EVALUATION
4.1 Evaluation Setup
This section provides a series of micro-benchmarks against the
LEAP and PyGAD libraries [3, 6]. We focus on time-per-generation
as the metric to compare each library. To accurately measure the
run time, we fix all hyperparameters and operators so that each
library is running the exact same GA. Specifically, we use roulette
wheel selection, uniform crossover (with 50% crossover probabil-
ity), and uniform mutation (with 1% probability). Unless otherwise
specified, we run a simple generational GA for 100 generations
with a population size of 100. We note that these hyperparameters
are not optimal as fitness is not a metric we are interested in. We
assume an EA giving better utility could be implemented in any of
the libraries (with varying degrees of difficulty).

All evaluations were run on a machine with 1/4 TB of RAM and
an 8-core Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz and a Tesla
P100 GPUwith 12GB ofmemory.We run the GA for 100 generations
for each configuration and report the mean time-per-generation
along with a 95% confidence interval represented as a shaded area
(a very small region in most plots as our timing is quite consistent).
We make our benchmark code available to reproduce the results2.

2https://github.com/LucasFenaux/gaggle-benchmarking

4.2 Supervised Learning
4.2.1 Problem Description. We consider the problem of training
a neural network (NN) using a GA by evolving the weights of
the model. We use a LeNet [8] model with 61.7k parameters. The
training dataset is MNIST [4], a classic benchmark for supervised
learningwhere the classification problem is identifying handwritten
digits from 0-9. A chromosome is a set of parameters for the NN.
The fitness function is the accuracy of the NN on the training
dataset. In this experiment, we fix the NN architecture and all
hyperparameters and only vary the population size of the GA to
show how each library scales. PyGAD supports NN training using
two helper functions that convert PyTorch models to Numpy arrays
and vice versa. We use these helper functions to support both
PyGAD and LEAP for NN training. The forward pass of the NN is
done in PyTorch and thus can be done on the GPU. We allow both
LEAP and PyGAD to use the GPU for inference (although both use
the CPU for all GA operations).

4.2.2 Results. We give the results in Figure 1. On the x-axis is the
size of the population, and on the y-axis is the time per generation in
seconds. We find that for all population sizes, Gaggle outperforms
both PyGAD and LEAP with statistical significance, as the 95%
confidence intervals do not overlap (the very small shaded area
around each line). Furthermore, Gaggle scales much better to larger
populations. This is due to the fact that Gaggle keeps all models
and data on the GPU. Conversely, PyGAD and LEAP need to bring
all models off the GPU and convert them to Numpy arrays in order
to perform GA operations, then re-initialize the PyTorch models for
the next generation. Gaggle instead modifies the PyTorch models
directly on the GPU when conducting GA operations. We note that
the GPU we use is small by today’s standards. We also ran this
experiment on a NVIDA A100 with 80GB of RAM. We observed a
similar plot to Figure 1, with the difference between Gaggle and
LEAP being even more significant.

4.3 Reinforcement Learning
4.3.1 Problem Description. Genetic Algorithms can provide a com-
petitive alternative to gradient-based techniques for training re-
inforcement learning agents. We consider the popular Cartpole
benchmark, where the goal is to train an agent to balance a vertical
pole on a moving cart. We use Open AI’s Gym [1] simulation for
this problem (recall that Gaggle supports any OpenAIGym prob-
lem). A chromosome is a set of parameters for the policy model.
The fitness function is the reward of the policy in the Cartpole
environment. In this experiment, we fix all hyperparameters (in-
cluding the population size to 100) and only vary the number of
learnable parameters in the policy model. For a fair comparison, we
set stop_on_done to False in the gym environment (so that every
run has the same number of steps).

We use the same neural network model as LEAP for our smallest
policy model (30 parameters). To show how the different frame-
work’s scale, we progressively add more parameters by increasing
the size of the layers and the number of layers from 2 to 3. This
yields five models with 30, 114, 450, 17410, and 67590 trainable
parameters. The smallest model is included as an example problem
in LEAP (using Numpy only). We implement all models in PyTorch
for both Gaggle and PyGAD. The smallest model was trained on

https://github.com/LucasFenaux/gaggle-benchmarking
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Figure 1: MNIST NN training evaluation
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Figure 2: Cartpole RL evaluation
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Figure 3: Rastrigin evaluation

the CPU for all libraries to ensure a fair comparison with LEAP. All
other models used the GPU. For LEAP, we had to create a custom
decoder that uses PyGAD’s conversion interface to transform the
larger models into a flattened Numpy array.

4.3.2 Results. We give the results in Figure 2. On the x-axis is
the number of learnable parameters in the policy models, and on
the y-axis is the time per generation in seconds. Gaggle performs
competitively with LEAP, scaling better to larger models. This is
again due to its GPU-centric design that avoids unnecessary model
conversions. PyGAD is significantly outperformed in all settings
by both LEAP and Gaggle. We remark that Gaggle’s advantage is
less significant than in supervised learning. This is because the
Cartpole is an easy problem to implement and solve. Thus, it does
not make sense to use deeper neural networks. However, for more
complex reinforcement learning problems that require significantly
larger models, Gaggle’s advantage would be significantly more
pronounced.

4.4 Benchmark Function
4.4.1 ProblemDescription. Finally, we consider a real-valued bench-
mark problem to show how we perform on non-machine learning
problems. We choose the Rastrigin Benchmark function, defined as

𝐹 ( ®𝑥) = 10𝑑 +
𝑑∑︁
𝑖=1

(
𝑥2𝑖 − 10 cos(2𝜋𝑥𝑖 )

)
(1)

where the chromosome ®𝑥 is a vector of dimension 𝑑 with each
𝑥𝑖 ∈ [−5.12, 5.12] (and 𝐹 is the fitness). We fix all hyperparameters
and vary only the dimension 𝑑 to show how the various libraries
scale. This problem is already implemented in the LEAP library,
although we observed it actually maximizes the function. We add
a negative sign to the Rastrigin function to fix this problem. For
PyGAD, we pass LEAP’s evaluate function as the fitness. Finally,
we code the Rastrigin function in PyTorch for Gaggle (although
Gaggle can also support any LEAP problem).

4.4.2 Results. We give the results in Figure 3. We find that Gaggle
and LEAP have a similar slope as 𝑑 increases showing that PyTorch
(Gaggle) and Numpy (LEAP) scale similarly to more complex prob-
lems. However, Gaggle incurs a larger overhead using PyTorch,
which is constant and less than a tenth of a second. However, Py-
GAD scales linearly with the dimension of the problem.

5 CONCLUSION
We have shown that Gaggle can build upon the success of PyTorch
to offer a scalable solution to machine learning-based problems in
EAs. We achieve state-of-the-art run times on a variety of problems,
allowing EAs to scale to deeper models and larger populations than
previous libraries. Gaggle makes it simple for researchers to design,
configure, deploy, and measure new research ideas through an
easy-to-modify object-orientated design. We achieve this without
sacrificing usability for novice users by also providing a one-line
interface. Thus, in time, Gaggle aims to enable faster research and
unify the GA community as PyTorch did the ML community.
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