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Abstract

We study the problem of privacy-preserving k-means cluster-
ing in the horizontally federated setting. Existing federated
approaches using secure computation suffer from substantial
overheads and do not offer output privacy. At the same time,
differentially private (DP) k-means algorithms either assume
a trusted central curator or significantly degrade utility by
adding noise in the local DP model. Naively combining the
secure and central DP solutions results in a protocol with im-
practical overhead. Instead, our work provides enhancements
to both the DP and secure computation components, resulting
in a design that is faster, more private, and more accurate
than previous work. By utilizing the computational DP model,
we design a lightweight, secure aggregation-based approach
that achieves five orders of magnitude speed-up over state-of-
the-art related work. Furthermore, we not only maintain the
utility of the state-of-the-art in the central model of DP, but we
improve the utility further by designing a new DP clustering
mechanism.

1 Introduction

Unsupervised learning allows data analysts to extract mean-
ingful patterns from raw data that may be difficult to label.
The canonical example of unsupervised learning is the Eu-
clidean k-means clustering problem, where data is grouped
into clusters with similar features. Clustering has a plethora of
important applications in recommendation systems, fraud de-
tection, and healthcare analytics [30]. In such applications, the
dataset often contains sensitive data, which necessitates the
use of privacy-preserving techniques. Combining databases
horizontally split across multiple parties in the federated sce-
nario yields more robust insights about the global population
at the cost of further exasperating the privacy risks.

To counteract the privacy risks, a number of works focus
on solving the federated k-means problem using secure multi-
party computation [10, 29, 34-38, 50, 56,59, 61, 67,70, 71].
Secure computation enables analysts to solve the k-means

problem while keeping the sensitive data encrypted. However,
all of these works still output the exact result of the clustering.
This gives a false sense of privacy; although the input and in-
termediate computations all remain private, no effort is made
to protect the privacy of the output. It is well known in the
literature that publishing exact statistics can leak significant
information about the input data and allow attacks such as
dataset reconstruction [19]. This level of privacy does not
justify the significant runtime overhead incurred by solely
using secure computation.

A separate line of research considers using differential pri-
vacy (DP) to protect the data. Differential privacy guarantees
that the output (the cluster centroids) will be approximately
the same regardless of any individual user’s participation.
Differential privacy can be applied in the central, local, or
shuffle models. In the central model, a trusted aggregator re-
ceives the input as plaintext (unprotected) and randomizes
the cluster centroids to ensure the output satisfies DP. Several
works [3,8,16,45,49,52,55,65,72] have considered the central
setting. In the local model, instead of using a trusted aggre-
gator, each party perturbs their data locally before sending it
to the aggregator. While this removes the need for a trusted
aggregator (similar to secure computation), the utility at high
privacy levels is low. Specifically, the utility is asymptotically
worse than the central model by a factor of /n, where n is
the number of data points [11]. Several works [12, 54, 63]
have considered the local model. The shuffle model is a hy-
brid between the local and central models, with two mutually
distrustful parties: a shuffler and an aggregator. Despite im-
proving over the local model, the shuffle model often has a
worse utility than the central model and requires additional
parties or computational overhead to implement an oblivious
shuffle.

To summarize, no prior work offers a solution that protects
both the input and output privacy of the federated k-means
problem and provides a good utility vs. privacy trade-off. A
straw man solution to our problem would be to combine the
current state-of-the-art solutions in federated k-means using
secure computation and k-means in the central DP model.
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However, this solution would be unacceptable as the runtime
of current federated k-means approaches using secure compu-
tation is prohibitively large. The state-of-the-art approach of
Mohassel et al. [S0] incurs runtime overheads on the order of
tens of minutes. Naively adding differentially private noise to
this computation will further increase this runtime.

Our work focuses on designing an efficient DP k-means in
the federated setting (using secure computation) that protects
the privacy of the input, output, and intermediate computa-
tions. Following related work in federated k-means [38,50],
we use Lloyd’s algorithm as the foundation of our protocol.
However, we design a new variant of DP-Lloyd [8, 65] that
achieves a tighter bound on the sensitivity. Our algorithm
significantly improves the clustering utility over the state-of-
the-art DP algorithm of Su et al. [65], especially in higher
dimensions and number of clusters.

Our algorithm is of independent interest in the central
model of DP. First, we enforce a bound on the radius of each
cluster in the assignment step of Lloyd’s algorithm. We then
modify Lloyd’s algorithm to compute updates relative to the
previous centroid. Our relative updates have a sensitivity pro-
portional to the bounded cluster radius rather than the domain
size used in previous work [8, 65]. We find that our radius-
based sensitivity bound is best suited to the use of the analytic
Gaussian mechanism [5, 15], which further improves utility.
Finally, we utilize additional post-processing steps based on
the radius and the domain to improve the algorithm further.
Together, these components lead to an improvement of up to
88% in utility (reduction in clustering error).

To tailor our DP-Lloyd algorithm to secure computation,
we design a protocol that publishes intermediate computa-
tions in each iteration. This allows operations that would be
expensive in secure computation (such as assignment and
division) to be conducted in plain text. However, unlike prior
work [29,38], we ensure that the intermediate computations
are protected by DP guarantees. We prove that the protocol is
secure in the computational DP definition [48], which allows
DP-bounded leakage during the computation. Typically, uti-
lizing the computational DP model to leak intermediate steps
implies sacrificing privacy or utility for an efficient runtime.
However, in our case, we specifically choose to leak interme-
diate values already accounted for in the central DP proof of
DP-Lloyd [8,65]. In other words, we get this speed-up with
no additional cost to the privacy parameter €. Furthermore,
rather than decrease the utility, we improve the utility of the
clustering over state-of-the-art approaches [65].

To perform the aggregation over multiple parties, we de-
sign a lightweight secure aggregation protocol that keeps the
aggregator oblivious to the client’s inputs and the global cen-
troids that are output at each iteration of the protocol. This
allows the aggregator to add DP noise equivalent to the central
model of DP. The combination of our improved DP algorithm,
leaking the DP centroids, and our lightweight, secure aggre-
gation protocol allows us to reduce the computation time by

up to five orders of magnitude compared to related work [50]
(from minutes to milliseconds per iteration).
In summary, our contributions are four-fold:

* We design the first DP protocol for horizontally federated
private k-means.

* We improve the clustering utility over state-of-the-art DP
k-means solutions by developing a new DP algorithm
with various improvements, such as enforcing a radius
constraint on the centroids and using relative cluster
updates.

* We design an efficient protocol using DP and a
lightweight secure aggregation protocol to implement
our protocol in the local trust model.

* We prove our protocol is secure and preserves the end-
to-end privacy in the computational model of DP and
reduces the runtime by five orders of magnitude over the
state-of-the-art secure federated approaches.

The remainder of the paper is organized as follows. We
begin with some problem-specific background information in
Section 2 and formally define the problem in Section 3. In Sec-
tion 4, we summarize the relevant literature. We then present
our complete protocol for federated DP k-means (FastLloyd)
and prove its privacy and utility in Section 5. Finally, in Sec-
tion 6, we give an in-depth evaluation of our protocol in terms
of utility, runtime, and communication size over various real-
world and synthetic datasets.

2 Background

2.1 Notation

Throughout this paper, we will denote objects that we intend
to further slice/index with boldface notation (e.g. u), while
keeping atomic objects (whether scalars or vectors) as normal
face (e.g. €). A summary of the notation used in this paper is
provided in Table 1, and we will define the notation as it is
used.

2.2 k-Means Problem

The k-means problem is a discrete optimization problem that
aims to partition a set of N d-dimensional observations into
k clusters, each represented by its mean or centroid. Given a
dataset of observations D = {x|,x2,...,xy }, where each ob-
servation is a d-dimensional real vector, the k-means problem
is to find an assignment of data points to clusters, and a set of
cluster centroids, that minimizes the Within-cluster Sum of
Squares (WCSS) objective:

k
argmin Y Y [lx — w3 (1)
O.u J=1x€0;



Symbol Description

)/ Set of M clients: {p1,p2,...,pm}
S Service provider
D, Local dataset of client p;: {x1,x2,...,xn; }
d Dimension of the data points
k Number of clusters
(0] Set of k clusters: {0y, 0a,...,0}
m Centroids of clusters: {uy, 0, ..., }
S; Sum of data points in cluster j
C; Count of data points in cluster j
R; Relative sum of data points in cluster j
T Number of iterations in Lloyd’s algorithm
Y Differentially-private noise
l Maximum radius bound

(g,9) Privacy budget
c Noise multiplier

Table 1: Notation used in the paper.

where O = {01,0,...,0¢}, O; C D are the clusters, and
u={u,1,...,u } are the centroids of the clusters, defined
to be the (arithmetic) mean of points in O;.

2.2.1 Lloyd’s Algorithm

The k-means problem is NP-hard in Euclidean space [2]. How-
ever, a simple heuristic known as Lloyd’s algorithm is com-
monly applied for practical applications [44]. We detail the
basic procedure of Lloyd’s algorithm:

1. Initialization step: Randomly sample k centroids
{u1,12, ..., } (typically from the datapoints).

2. Repeat until convergence (the assignments no longer
change) or a predetermined number of iterations has
been reached:

(a) Assignment step: Assign each observation x; to
the nearest centroid (using the Euclidean distance).
This creates clusters O; for j =1,2,..., k. Formally,
the assignment is:
-1 -1
O = Lxt = VB < N — VIR Ve e {1, k)
(b) Update step: Calculate the new centroids to be the
mean of the observations in the cluster:

Y x
(I) xlEOy)
i =T,0

0;

2.3 Differential Privacy

Differential privacy (DP) [17] is an increasingly popular no-
tion to protect the privacy of individuals while allowing the

computation of aggregate statistics. Differential privacy guar-
antees that an algorithm’s output is approximately the same,
regardless of the participation of any single user. More for-
mally, differential privacy can be defined as follows.

Definition 2.1 (Differential Privacy). A randomized algo-
rithm M : D — R is (g,8)-DP, if for any pair of neighbouring
datasets D,D' € D, and for any S C R we have

Pr[M(D) € S] < *Pr[M(D') € S] + 8. (2)

The privacy parameter € defines how similar the outputs
must be, and d allows a small chance of failure in the defini-
tion. We use the unbounded neighbouring definition where
datasets are neighbours if [D\D' UD'\D| = 1. That is, we
allow for the addition or removal of a single data point. We
note that arbitrary computations can be carried out on the
output of a DP mechanism without affecting privacy (the post-
processing lemma [18]). Finally, DP is composed naturally
with multiple runs of a mechanism. If we apply a differen-
tially private mechanism(s) sequentially, the privacy param-
eters are composed through summation or more advanced
methods [18]. If a mechanism is applied multiple times over
disjoint subsets of the dataset, then the total privacy leakage
is the maximum privacy parameter over each subset (parallel
composition [18]).

Definition 2.2 (Sensitivity). Let f: D — R¥. If D is a dis-
tance metric between elements of R* then the D-sensitivity
of fis
AY) = max D(£(D), f(D)), 3
max D(/(D). (D) )
where (D,D') are pairs of neighbouring datasets.

We will focus on the ¢/, norm in this work as we use the
Gaussian Mechanism. To analyze the Gaussian Mechanism,
we will use Gaussian Differential Privacy (GDP) [15].

Definition 2.3 (GDP [15]). A mechanism M is said to satisfy
0-Gaussian Differential Privacy (8-GDP) if it is Gg-DP. That
is,

T(M(D),M(D")) > Ge

for all neighbouring datasets D and D', where T is a
trade-off function measuring the difficulty for attackers in
identifying presence of an individual data point and Gg =
T (N(0,1),0(6,1)) (see Dong et al. [15] for specifics of
the definition).

Naturally, the Gaussian Mechanism satisfies GDP.

Theorem 2.1. (Gaussian Mechanism GDP [15]) Define the
Gaussian mechanism that operates on a statistic  as M(D) =
f(D) 4+, where y ~ N(0, (AY)2/02). Then, M is 6-GDP.

Similar to DP, GDP composes over multiple adaptive uses
of a mechanism.



Theorem 2.2 (GDP Composition [15]). The n-fold composi-

tion of 8;-GDP mechanisms is /02 + - -- + 02-GDP.
Finally, it is possible to convert a GDP guarantee to DP and
vice versa:

Theorem 2.3 (GDP to DP [5, 15]). A mechanism is ©-GDP if
and only if it is (€,8(€))-DP for all € > 0, where

5(8):<I>(fg+g>fead>(f§—9).

In practice, we use the algorithm derived by Balle and
Wang to solve this function for 0 [5, Algorithm 1].

3 Problem Statement

We consider M clients denoted by p = {p1, p2,...,pm}, with
each party p; owning a private dataset D; = {x{,x2,...,xn; },
where x; € R4, d denotes the dimensionality of the dataset and
N; is the size of the dataset of party i. The total dataset that we
compute on, can be very large, even if there are only a small
number of clients. The objective is to compute a collaborative
k-means clustering (O, u) over D that minimizes the WCSS
objective (1); where D = | J'=¥ D; is the union of the datasets
held by the clients, O = {0, 03, ..., Oy} are the clusters, and
u={u1, 12, ..., } are the respective centroids of the clusters.

We aim to optimize this objective while formally prov-
ing the privacy of the output and intermediate computations.
Specifically, the protocol should be secure in the computa-
tional model of differential privacy introduced by Mirnov et
al. [48] and extended to the multi-party setting by Humphries
et al. [33]. We further extend this model to the approximate
DP setting by incorporating the failure probability d.

Definition 3.1 (IND-CDP-MPC [33,48]). A multi-party pro-
tocol I1 for computing function f satisfies (€(N),d)- indistin-
guishable computationally differential privacy (IND-CDP-
MPC) if for every probabilistic polynomial time (in \) adver-
sary A with input dataset Dy, and for neighbouring datasets
D, D' belonging to the honest parties (i.e. D,D' = Uy sD;),

Pr[A(VIEW (D4, D)) = 1]
<exp(e) - PrlA(VIEWY (D4, D)) = 1]+ negl(A) + 8.

where A is the function representing the adversary’s decision
on whether the dataset was D or D' based on their VIEWE,
which is the transcript of all messages observed by adversary
A during execution of protocol 1. negl(A) is a negligible
function decreasing faster than any inverse polynomial in \.
Likewise, the definition holds for every other party’s view of
neighbours (D,D").

Intuitively, a protocol that satisfies IND-CDP-MPC se-
curely simulates a TTP executing a central DP mechanism.

Specifically, even after observing the output and intermediate
computations, any (computationally bounded by a polynomial
in A) party should not learn more about any other party’s lo-
cal dataset than what could be learned from the differentially
private leakage of the central DP mechanism itself.

We make the following assumptions when designing our
protocol:

* The existence of an honest-but-curious service provider
S to assist with multiparty computations. This party
should be oblivious to all inputs and results, i.e., the
service provider learns nothing about the client’s input
or output during the execution of the protocol (a weaker
assumption than the local and shuffle models). We also
discuss alternatives to this assumption in Appendix C.

¢ Clients share a common secret used as a Pseudorandom
Number Generator (PRNG) seed and do not collude with
the server. This secret can be established through stan-
dard public-key schemes (e.g., Bonawitz et al. [9] uses
Diffie-Hellman key exchange [14]) or TLS-secured chan-
nels.

3.1 Comparison to other models

In the local DP model, each client independently perturbs
their data before sharing it. Since privacy is guaranteed at the
source, there is no need to trust an aggregator or rely on any
cryptographic protocols. However, it significantly reduces
accuracy because noise is added individually to each data
point rather than to aggregated statistics.

The central DP model, in contrast, involves a trusted third-
party (TTP) aggregator that collects raw data from clients and
applies noise only to aggregated results. This significantly
improves accuracy over the local model since the sensitivity of
aggregated statistics is lower than individual points. However,
this model requires strong trust assumptions, as the aggregator
has full access to the clients’ raw data.

The shuffle DP model offers a compromise between local
and central DP by introducing a non-colluding semi-trusted
shuffler that permutes messages before aggregation. This shuf-
fling enhances privacy, allowing clients to inject less noise
compared to local DP while still not requiring trust in the
aggregator. Although accuracy improves compared to local
DP, the shuffle model remains inherently less accurate than
the central DP model. Additionally, it necessitates either trust-
ing the shuffler to remain non-colluding or employing an
oblivious shuffle protocol.

On the other hand, the IND-CDP-MPC model “replaces”
the trusted aggregator from central DP with a secure multi-
party computation (MPC) protocol that simulates the central
mechanism. Therefore, it retains the accuracy of the central
DP model while operating under a local model of trust (only
revealing noised data). This allows for a significantly better



privacy vs. utility trade-off than the local and shuffle DP
models, and is therefore the focus of this work.

The exact MPC model allows multiple parties to jointly
compute a function over their inputs while keeping those in-
puts private. The model assumes that no information beyond
the final (non-private) output is revealed. However, without
protecting the output with DP, the result is vulnerable to re-
construction attacks that can leak the entire dataset in the
worst case. Thus, we focus on the IND-CDP-MPC model.

4 Related Work

4.1 Secure Exact k-means

We first discuss secure computation based approaches to k-
means that do not preserve the privacy of the output. This
literature shows a trade-off between privacy and efficiency.
Approaches that prioritize efficiency often compromise pri-
vacy by allowing the leakage of intermediate computations
such as sums, counts, or centroids, which can be exploited to
infer sensitive data [29, 38]. For instance, Gheid et al. [29]
rely on computing secure sums for aggregating sums and
counts across clients. While this is very efficient in practice,
it reveals aggregate intermediate values to all clients, which
is not considered secure [31]. As we discuss in Appendix C,
naively fixing this leakage would require a significant degra-
dation in utility or performance. Another approach by Jiang
et al. [38] employs homomorphic encryption and garbled cir-
cuits to conceal sums and counts. However, it still reveals the
intermediate centroids to all clients in the clear. Many other
works in this category are explained in the SoK of Hedge et
al. [31].

Conversely, secure approaches that do not leak intermediate
computations employ heavy cryptographic techniques, like
fully homomorphic encryption, leading to significant perfor-
mance degradation [10, 36,40, 59]. Bunn and Ostrovsky [10]
utilize arithmetic secret sharing alongside homomorphic en-
cryption, with high-performance overheads. Homomorphic
encryption has also been used by Rao et al. [59], Jaschke
et al. [36], and Kim et al. [40], and consistently results in
prohibitively high computation time due to the computation
demands of the encryption. The work of Mohassel et al. [50]
is a notable exception, offering a scheme that is significantly
faster than previous state-of-the-art methods. By using op-
timized 2-party computation primitives, batched oblivious
transfers, and garbled circuits, they achieve a speedup of five
orders of magnitude over Jaschke et al. [36]. However, the run-
time is still on the order of minutes; and the communication
size is on the order of gigabytes. In contrast, our approach is as
efficient as the protocols that leak intermediate computations,
while protecting the privacy of the output and intermediate
computations with DP.

4.2 Differentially Private k-means

DP k-means algorithms aim to address output privacy by in-
troducing noise during clustering, hiding individual data con-
tributions, and ensuring a formal privacy guarantee. Research
in DP k-means is divided into central and local models.

4.2.1 Central DP

The central model operates with a trusted curator who col-
lects data for analysis, hiding individuals’ information in the
output, but not from the curator itself. Among the central
approaches, DP-Lloyd introduces noise during each centroid
update, by adding Laplace noise to both the sum (numerator)
and the counts (denominator) when computing the arithmetic
mean of points within a cluster [8]. DP-Lloyd was later im-
plemented in the PinQ framework [47] with a fixed number
of iterations. Dwork [16] extended this framework to allow
for an arbitrary number of iterations, allocating an exponen-
tially decreasing privacy budget to each iteration, although it
was noted that utility degrades beyond a certain number of
iterations due to increasing noise levels. The state-of-the-art
in DP-Lloyd was achieved by Su et al. [65], who included an
error analysis to determine the optimal number of iterations,
optimized the splitting of privacy budget between sum and
count queries, and introduced a “sphere-packing" centroid
initialization method that significantly improves clustering
quality.

The Sample and Aggregate Framework (SaF’) partitions
the dataset into multiple subsets, upon which the non-private
Lloyd’s algorithm is executed independently [53]. The result-
ing centroids from each subset are then aggregated using a
standard DP mechanism. SaF was later implemented within
the GUPT system [49]. However, experiments conducted by
Su et al. [65] suggest that DP-Lloyd consistently outperforms
SaF across various synthetic and real datasets. Synopsis-based
methods take a different approach by first generating a syn-
opsis of the dataset using a differentially private algorithm,
then applying the k-means clustering algorithm on this syn-
opsis. Qardaji et al. [57] proposed a synopsis technique for
2D datasets, which was extended and optimized by Su et
al. [65] to higher dimensions. However, this approach only
outperforms DP-Lloyd in datasets with less than three dimen-
sions [65]. Another, more theoretical, line of work focuses on
minimizing approximation error bounds, without implementa-
tion or empirical evaluation [3,20,21,27,54,64]. The work of
Ghazi et al. [27] concludes this long line of work by achiev-
ing the same approximation factor as the best non-private
algorithms. However, these methods suffer from superlinear
running times, making them impractical for large datasets,
where privacy is most important.



4.2.2 Local DP

In contrast to central DP, the local model operates under
the premise that no trusted curator is available. This neces-
sitates that individuals randomize their data locally before
it is aggregated, which reduces utility by introducing a sig-
nificantly higher level of noise (proportional to the number
of data points). Several works have been proposed in this
area [12,54,63], most of which focus on the theoretical error
bounds rather than practical applications. The most efficient
and accurate local DP protocol by Chang et al. [12] could
be extended to our setting, by instantiating the aggregation
oracles with our MSA protocol. This would significantly im-
prove the accuracy of their protocol. However, this would
introduce high communication complexity (O(M Y'Y, N;)),
since the complete net-tree would need to be aggregated
across all parties. In contrast, our protocol transmits only
centroids and counts per iteration, leading to a complexity of
O(MKT). Another line of work studies private aggregation (a
building block for federated DP k-means) in local and shuffle
DP models [4,28]. However, these works cannot overcome
the utility gap stemming from the noise being added to each
data point. Finally, Li et al. [43] attempt to bridge the gap
between these central and local models in the vertically fed-
erated setting. Their approach relies on an untrusted curator
aggregating noisy local centers and membership encodings
from the clients to generate a private synopsis. However, this
approach is specifically tailored for the vertical setting and
cannot be applied to our configuration. Our work yields utility
that is even better than state-of-the-art work in the central
model [65] while obtaining the trust assumptions of the local
model and operating in the federated setting.

5 Distributed DP k-means

First, we overview our modified DP algorithm using the maxi-
mum radius constraint and relative updates. Then, we describe
FastLloyd, including the initialization, assignment, and update
steps. Finally, we provide our security theorem, and discuss
how we choose the various parameters.

5.1 Radius Constrained DP k-means

In this section, we describe how we improve the clustering
utility over the work of Su et al. [65], a contribution that is in-
dependently applicable to the central model of DP. We observe
that despite being common in the non-private literature [7,42],
neither federated exact k-means nor DP k-means algorithms
in the literature apply any constraints to the k-means objective.
In this work, we focus on a type of constraint not studied in
the non-private literature: bounding the radius of each clus-
ter. This constraint is particularly useful in the context of
DP k-means, as it allows a tighter sensitivity bound when
computing cluster updates relative to the previous centroid.

In the DP k-means literature [8,16,47,65], a typical private
clustering algorithm is to run Lloyd’s algorithm, with DP
noise added to the update step. The DP mean is computed
by two DP queries: one for the sum and one for the count.
The sum is then divided by the count as a post-processing
step. The challenge in these protocols is that the sensitivity of
the sum is bounded by the domain size. If the datapoints x;
are contained in [—B, B, then the [, sensitivity of the sum is
B\/Zi . This is because, with no other constraints, there exists
a worst-case data point that could add B to the sum in all
dimensions, regardless of the cluster it is assigned to.

In this work, we modify the k-means objective such that
in addition to minimizing the WCSS (Eqn 1), a constraint on
the maximum radius of each cluster must also be satisfied.
Specifically, no data point in a cluster can be more than 1 away
from the cluster’s centroid. Thus, the objective becomes to
minimize (Eqn 1) s.t.:

[ —ujlla <M Vx € 0,V 4)

To enforce this constraint, we modify the assignment step
to not assign a data point to a cluster if it is more than 1 away
from its nearest centroid. Any unassigned data points are
discarded and, therefore, do not contribute to any sum or
count query. Intuitively, bounding the maximum radius of
each cluster limits how much a cluster can move by adding
or removing a data point since a worst-case data point must
be close to a cluster’s centroid to be factored into the mean.
However, simply bounding the radius of the cluster does not
tighten the sensitivity of the sum query. This is because the
sensitivity analysis must consider the worst-case cluster. If
a cluster is within 1 of the domain boundary, then the ¢,
sensitivity of the sum query is still B\/d.

To realize the reduction in sensitivity from bounding the
radius, we must modify the update step as well as the assign-
ment step. Instead of perturbing the sum of the data points
themselves, we perturb the difference between the data points
and their assigned cluster centroid. Specifically:

RV =Y x—i™" ®)
x,eoﬁ’)

Essentially, we are computing the “updates” to the centroids,

rather than the centroids themselves. This simple change

has a significant impact on the sensitivity of the sum query.

The sensitivity of the relative sum is now bounded by the

maximum radius parameter 1M:

Theorem 5.1. If the constraint (4) is satisfied, then:

R _ (1) (t)
A —ng;lgﬂlle (D) =R (D)][2<m ©)

for all clusters j € [k|, and iterations t € [T].

We prove this in Appendix A.1. The intuition is that a worst-
case data point only contributes its distance to the centroid
(which is bounded by 1), rather than its distance to the origin.



Our maximum distance constraint naturally bounds the /,
sensitivity as it bounds the Euclidean distance, and thus, Gaus-
sian noise is a natural choice that also scales more efficiently
to higher dimensions. It also allows for a simple and tight
privacy analysis using Gaussian-DP [15]. We use the analysis
of Balle and Wang [5, Algorithm 1] to obtain the noise mul-
tiplier 6. We divide the privacy budget between the relative
sum and the count following our analysis in Section 5.5 as:

ov1
GR*# o =c\/1+V4d (7)

We then add noise as follows:
_ pt
_Rj—i-YR where ¥ ~ AL(0,
W =Citof where  ~N(0,(c)’T).  (9)

We prove in Section 5.4 that adding noise in this way satisfies
DP. After adding noise, we compute the new centroid as:

o )m’T)  (®)

5 (1)
~n _Rj -
b= e

(10)

Without DP noise, this yields an equivalent cluster update.

(t) () (t=1) ()
Sy —C; Su
0 _ Y jH (t=1) _ 2
Hpo = T ,:;t)""“j _731(;) (1D

where S;” =Y x7 is the sum of the data points. With the

veol)
160]-
DP noise, we get an additional noise (error) term in the sum
compared to noising the sum directly:

50— jO ey

sV = RV e (12)
= SR R () Y (13)
= SRy (14)

However, as we show in Section 6.2, this additional error
is compensated for by the increase in utility from reducing
the sensitivity from Bv/d to 1. The maximum radius fur-
ther decreases error by reducing the effect of outliers, as data
points far away from any centroid will not (and, in some
cases, should not) be assigned to any cluster. We also use the
maximum radius constraint as an additional post-processing
constraint, which we call Radius Clipping. Namely, if a noisy
centroid is computed to be more than 1 away from the previ-
ous centroid, we truncate it to be | away.

5.2 Overview of FastLloyd

In this section, we describe our protocol for federated DP
k-means, FastLloyd. The focus of FastLloyd is to create the
most efficient and accurate protocol possible under the threat

model defined in Section 3. Specifically, we refrain from
adding additional noise or computations that would be needed
to handle client failures or collusion between clients and the
server. We leave it to future work to adapt our approach to
use more resilient aggregation protocols [9,22,39,62].

5.2.1 Protocol Intuition

A naive IND-CDP-MPC implementation of Lloyd’s algorithm
would use an end-to-end secure protocol (e.g., [50]) to com-
pute the exact centroids in every iteration, then add DP noise
using a secure computation. This entails gigabytes of com-
munication and tens of minutes of runtime as we show in
Section 6.

Instead, our key insight is that the tightest DP analy-
sis for Lloyd’s algorithm is an (adaptively)-compositional
proof [8, 65] that assumes that the (perturbed) intermediate
computations are published in each iteration. Therefore, re-
vealing these intermediate DP updates does not violate se-
curely simulating the TTP, as required by the IND-CDP-MPC
model . This allows us to compute divisions and assignments
locally, rather than in a secure computation protocol.

We note that leaking the intermediate computations is not
possible in the exact MPC model. Thus our approach is not
applicable to the exact MPC model (where the output is not
private). In this paper, we demonstrate that, by working within
the computational differential privacy framework, the state-
of-the-art DP version of Lloyd’s algorithm can be computed
significantly more efficiently (five orders of magnitude faster)
in MPC than its non-private counterpart.

5.3 Algorithm Description

Algorithm 1 overviews the protocol from the perspective of a
single client. Following the outline of Lloyd’s algorithm, the
following sections describe how we design each of its main
steps: initialization, assignment, and update.

5.3.1 Initialization: Sphere Packing

We modify the initialization so that it can be carried out in a
federated manner. We employ the sphere packing initializa-
tion approach of Su et al. [65] as it was shown to outperform
random initialization. The sphere packing approach is data-
independent and thus does not use any privacy budget. The
process can be outlined as follows:

1. Initialize a radius parameter a.

2. For j € {1,2,...,k}, generate a point y; such that it is at
least of distance a away from the domain boundaries and

I'This insight would not apply to any future DP analyses that achieve
privacy amplification by specifically hiding intermediate computations. Our
approach would still be applicable, but at would not benefit from this amplifi-
cation.



Algorithm 1 FastLloyd from p;’s perspective

Inputs: Local Dataset D;.
Output: Cluster Centres f1
1: ji© = INITIALIZATION(seed)
2. forr e {1:T} do
3: /I Assignment Step
4: for x; € D; do
5 J/ =argmin||x; 7[15;,—1) [l
J'elk

(T)

6: ifHXI—,fly/_l)Hz < n then
7: Ol(? — X

// Local Update

for j€{1,...,k} do

(1) ~(1—1)
10: Compute R;/ = ¥ x—
JCIGOE;)

11: Compute C’S;-) = 0"

12: /I Global Update
13 U= GLOBALMSA(RS-), oR, seed, 1)

14: C-= GLOBALMSA(CE;-), o€, seed, 1)

15: // Post Process Result

16: for j€{1,...,k} do
~ O . -1

17: hj= %ﬂly )

18: @ = FoLp(u)

at least of distance 2a away from any previously chosen
centroid. If a randomly generated point does not meet
this condition, generate another one.

3. If, after 100 repeated attempts, it is not possible to find
such a point, decrease the radius a and repeat the process.

The radius a is determined via a binary search to find the max-
imum a that allows for the generation of k centroids. In Algo-
rithm 1, each client independently calls the Initialization
function (Line 1) with the same random seed, which results
in each client starting with the same centroids.

5.3.2 Assignment: Radius Constrained k-means

In Line 5, each client locally computes the closest cluster to
each of their data points. If the data point is within 1 of the
cluster’s centroid, it is assigned to that cluster (Line 7). Any
points further than 1 from the cluster’s centroid are not as-
signed to any cluster. We discuss how we set 1 in Section 5.6.

5.3.3 Local Update

The client has already locally assigned each of their data
points to a cluster, following the constraints in the previous
step (Line 7). Next, they compute the relative sum and the
count for each cluster using their local dataset. We call this the

local update step. The output of the relative sum (Line 10) and
the count (Line 11) are two matrices of dimensions (k x d)
and (k x 1) respectively.

5.3.4 Global Update: Masked Secure Aggregation

We modify the update step to release a perturbed version of
relative sums and the counts to each client under the CDP se-
curity model. By publishing the previous noisy centroids, the
assignment and local update computation can be performed
locally by each client instead of using a secure computation
protocol. In the global update step (Lines 13 and 14), we pri-
vately aggregate (sum) the local updates of all clients, perturb
the result, and reveal the noisy global relative sums and counts
for the next round.

We describe our aggregation protocol in Figure 1. We call
this protocol Masked Secure Aggregation (MSA). In MSA,
similar to regular secure aggregation protocols [9], a service
provider S securely aggregates values from M clients, all
while being oblivious to every client’s contributions. How-
ever, in MSA, the server is also oblivious to the result of the
aggregation operation; the server only acts as an aggregator
(who also adds DP noise) and is oblivious to both the input
and output. Each client p; possesses a private value (a ma-
trix v; € R¥*4_ where R could be Znes). These clients aim to
collectively compute the element-wise sum of their private
matrices: v = Y1, ;- In addition to the client’s values, we
assume the noise scale ¢ and a random seed (that all clients
know) are also provided.

Clients Send Data. The first step in the protocol is for
each of the M clients to generate a random mask set. The
random mask set is composed of M random matrices of the
same dimensions as the client items: {r,rp,...ry} where
each value is sampled uniformly from R. Because all the
clients have access to a shared seed and PRNG they can each
compute the entire set locally. In Line 1, each client samples
the entire set and sums it (in Line 2) to get the global mask
matrix r (which will be used to decrypt later).

In Line 3, each private value is converted to a fixed-point
format, V;, by scaling it up with a power-of-2 scale factor, 29.
Formally, v; = [v; x 2¢]. All fractional values are rounded
to the nearest representable value in this fixed-point repre-
sentation. The choice of the scale factor, 29, determines the
precision of the representation”. In practice, we empirically
choose g = 16.

Then, in Line 4, each client encrypts (masks) their input
v; by adding their share of the mask r;. Finally, each client
sends their masked values to the server. This step masks the
actual value v; from the server because r; acts as a one-time
pad. Note that this masked value is never sent to other clients,

2A larger 29 allows for greater precision but also reduces the number of
bits available for the integer part of the number, which might cause overflows.
A workaround is to increase the bit-width of the operations, which increases
the computational load and the communication cost.



GlobalMSA(v;, G, seed, t)
Clients i € {1,...,M} Server S
// Each client i masks
1: {r1,....,rm} = PRNG(seed,t)
2: r= ):i-‘il T
30 W= [y x 29
41 Enci(vi) =Vi+r
5 Enci(vi)
E—
/I Compute sum
6: b+r=YM, Enci(v;)
// Add noise value
7 ¥~ N(0,6%)
8: ¥=[yx24]
9: Enc(v+y)=v+r+%
10 Enc(v+7)
PR
1: v4+y=~(Enc(v+y)—r)/24

Figure 1: Global Masked Secure Aggregation Protocol with
M Clients.

as they would be able to unmask it easily.

Server Aggregates Data. Upon receiving the masked ma-
trices, the server first sums over each client’s contribution in
Line 6. This yields the masked global sum v + r. The server
then samples from a zero mean Gaussian distribution with
standard deviation equal to the supplied ¢ for each entry in
the result matrix. This noise must also be converted to fixed-
point by computing ¥ = [y x 29]. We show why this preserves
differential privacy in Appendix A.3. Finally, the server adds
the noise ¥ to the sum and broadcasts it to the clients.

Client Unmasks Data. Upon receiving the result from the
server, each client must unmask the result. They do this by
simply subtracting the mask 7 that they computed in Line 2.
After unmasking, each client must scale down the result to
retrieve the correct answer. This is done by dividing the un-
masked sum by the scale factor, 29, to reverse the initial scal-
ing operation.

5.3.5 Post-processing

In Algorithm 1, each client locally post-processes the results
to obtain the centroids for the next iteration.

First, each party divides the relative sum by the count and
shifts the result by the previous centroid to get the new cen-
troid (Line 17) following Eqn 10. Then, if the new centroid is
more than 1 away from the previous centroid, we truncate it
to be 1 away.

Finally, we apply a post-processing step to the centroids
to ensure they remain within the domain. A naive post-
processing strategy is to simply truncate out-of-bounds cen-
troids to the boundary. However, in practice, we find (in Ap-

pendix B) that folding [32] the value (reflecting it over the
boundary) gives better utility. More formally, the operation
folds a value x into the range [—B, B] through modular arith-
metic. We first compute (x+ B) mod (2B), then if this result
exceeds B, we reflect it about B by subtracting it from 2B5.
Finally, we return the value to the target range by subtract-
ing B. This approach creates a periodic folding pattern that
naturally reflects values across the boundaries while preserv-
ing distances from the nearest boundary point. We show in
Appendix B that folding improves the algorithm’s utility.

5.4 Privacy Analysis

FastLloyd allows for a central party to add noise, retaining
the utility of the central model of DP. However, since the
server only interacts with masked values, and the clients can
only observe a differentially private view of the final (noised)
centroids, the protocol provides a level of privacy akin to that
of the local model of DP.

We state the end-to-end security Theorem of our algorithm
and defer the proof to Appendix A.2.

Theorem 5.2. Algorithm I ensures (¢(A),8)-IND-CDP-MPC
in the presence of a semi-honest, polynomial time adversary
who controls at most a single party.

5.5 Error Analysis

To analyze the error of our approach, we follow a similar
approximate error analysis as Su et al. [65]. The purpose of
the analysis is primarily to choose the ratio of the privacy
parameters and the number of iterations. Thus, the analysis
makes a series of approximations. Following Su et al., we
consider a single iteration and a single cluster for this analysis.
To simplify the notation, we omit the cluster index j and
instead index the variables by the dimension /. We analyze
the mean-squared error between the true centroid (1) and the
differentially-private centroid (f1) for one iteration across all
dimensions.

MSE (") =E

Lo
h;mh —f, )Z] (15)

We first expand the following term using the definition of our
DP mechanism from Section 5.1:
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After taking the expectation over all clusters and assuming
that C +7¢ ~ N /k, following Su et al. [65], we get:
k3

mse (i) ~ & (E[0 7B +E[0)])
(Vo () BI9 4ver (1)

where, in the first line, the middle term goes is zero as the
noise terms are i.i.d. and zero mean. The second line holds
because each vy is an independent variable with zero mean,
and so

Q

E[(Y)*] = Var (y) — (E[¥])* = Var (y).

Finally, we approximate E[):Z:l V] = % We argue that if the
data were uniformly distributed in a hypersphere of radius
M around the centroid, the expected distance from the cen-
troid would be 1 /2. This gives the final error term over all
dimensions:

MSE (;N)) ~

sz (Var (F) 7+ 4avar (1))

(16)

Privacy Budget Splitting We now use the approximate
analysis in Eqn 16 to determine the optimal privacy budget
split between the relative sum and the count. We substitute
the variance of the noise terms from Eqn 7 into Eqn 16:

((° )

In our privacy analysis, we compute the noise multiplier ¢
such that we achieve é-GDP. Thus, we need to split the noise
multiplier between the relative sum and the count following

Theorem 2.2:
1)’ e !
ok o¢) o
We minimize the per iteration error, subject to this con-
straint, using Lagrange multipliers, which gives:
o€ = Vado®.

Simply scaling each sigma by this ratio gives Eqn 7. Substi-
tuting Eqn 7 back into the error analysis gives:

3 Fn2Tc?(14/4d)?
MSE (“(t)) 4N?

Bn’T
4N?

MSE (,7(’)) ~ )2 +4d(ck 17)

(18)

19)

(20)

Optimal Number of Iterations Using this analysis, we can
determine a heuristic for the number of iterations. Following
Su et al. [65], we assume that the error in each iteration is less
than 0.004 x B. Re-arranging for T gives:

_ 4N?(0.004)
k3 262< +\ﬁ)

2y
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However, as Su et al. [65] explain, in practice, there is no
need to go beyond seven iterations and at least two iterations
are needed to gain useful results. Therefore, we truncate this
analysis such that the number of iterations is in the range
[2,7].

5.6 Setting the Maximum Radius Parameter

We derive a dimensionality-aware radius parameter 1| based
on the geometric properties of the feature space. Consider a
d-dimensional bounded feature space where each dimension
is constrained to the interval [—B, B]. The domain diagonal
B, representing the maximum possible distance between any
two points in this space, is given by:

B=Vdx(2B) (22)

When partitioning this space into k clusters, each cluster oc-
cupies a fraction of the total volume. The total volume of
the feature space is (2B). Assuming uniform partitioning,
each cluster occupies a volume of (2B)¢ /k. Consequently, the
effective length of each cluster along any dimension can be

expressed as:
2B

LC - W
Assuming hypercube-shaped clusters, the maximum distance
from a centroid to any point within the cluster (the cluster
radius) is half the cluster’s diagonal. This can be calculated
as:

(23)

Vi _B

xf—— T

Cluster Radius = i

(24)
Based on this analysis, we propose a heuristic 1, to constrain
the cluster radius in a d-dimensional space as:

op

Y] (25)

Na =
where o is a scaling factor we set to 0.8 based on experiments
using synthetic data in Appendix B.

In scenarios with low d and high k, 1 becomes increasingly
restrictive as k'/¢ grows larger, providing tighter bounds on
cluster radii. However, as dimensions increase, the curse of di-
mensionality necessitates larger cluster radii to accommodate
the exponential growth of volume in the space, (2B)¢. Our
approach takes this into account through k'/d approaching
unity in high dimensions. This dimensional scaling aligns
with the intuition that radius constraints are most meaningful
in lower-dimensional spaces, where cluster boundaries remain
well-defined, whereas, in high-dimensional spaces, the curse
of dimensionality renders such constraints increasingly less
effective as distance metrics lose their discriminative power.

We consider two distinct approaches to implement the ra-
dius constraint. In the “Constant” approach, the radius con-
straint is consistently enforced throughout the clustering pro-
cess. Alternatively, the “Step” approach initializes with a



broader constraint of 3/2 at iteration zero and then transitions
to the computed radius n for the remaining iterations. This
two-phase strategy allows for initial flexibility in centroid
placement while gradually imposing stricter constraints for
fine-tuning the centroids. We show in Appendix B that the
“Step” approach is superior.

6 Evaluation

In this section, we provide an extensive evaluation of our work
in terms of the following questions:

Q1 How does the utility of FastLloyd compare with state-of-
the-art in central model [65] for interactive DP k-means?

Q2 How does the utility of FastLloyd scale with varying the
number of dimensions and number of clusters?

Q3 How does the runtime, communication, and number of
rounds for FastLloyd compare with the state-of-the-art
in federated k-means using secure computation [50]?

Q4 How does the runtime and communication of FastL-
loyd scale with varying the number of dimensions, clus-
ters, and data points?

6.1 Experimental Setup
6.1.1 Implementation

Our experimental evaluation was conducted on a Macbook
Pro M2 Max (30-core CPU, 38-core GPU, 64GB RAM) us-
ing Open MPI [26] for multiparty communication. Following
Mohassel et al. [50], we evaluate in the LAN setting with
simulated network latency (0.25ms per send operation), not-
ing that WAN runtimes can be derived using a linear cost
model. Our experimental framework utilizes a two-client
setup with balanced dataset partitioning. The MSA proto-
col (Figure 1) operates over the ring R = Z,3, employing
fixed-point representation with precision factor g = 16. All
experiments use randomly partitioned datasets, with results
averaged over 100 runs and reported with 95% confidence in-
tervals where applicable. For FastLloyd, we set the radius con-
straint a0 = 0.8 using the “Step” strategy (see Appendix B for
detailed analysis and justification of these parameter choices).
We set & = m and report the total € over all iterations for
all experiments. Our implementation is publicly available at
https://doi.org/10.5281/zenodo.15530617.

6.1.2 Baselines

We evaluate FastLloyd against several baselines. For evaluat-
ing utility, we implement three protocols. First, Lloyd [44],
a non-private Lloyd’s algorithm adapted to our federated
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framework with sphere packing initialization. Second, SuL-
loyd [65], which adapts Su et al.’s centralized differentially
private k-means clustering algorithm to our federated setting
using our masked secure aggregation (MSA). Third, GLloyd,
a modification of SuLloyd replacing Laplace noise with Gaus-
sian noise and using composition and privacy budget analysis
similar to our work. In Appendix B.1, we provide the details
of how the analysis in Section 5.5 differs for GLloyd. For
computational and communication efficiency benchmarking,
we compare against MohLloyd [50], established by Hedge et
al. [31] as the most efficient secure k-means protocol.

6.1.3 Datasets

Our evaluation employs both real and synthetic datasets. We
use established datasets from the clustering datasets reposi-
tory [25], following Su et al. [65] and Mohassel et al. [50]
for comparability. For Birch2 [73], we take 25,000 random
samples from the 100,000 sample dataset.

For evaluating scalability, following [65], we generate syn-
thetic datasets (Synth) using the clusterGeneration R pack-
age [58], which enables control over inter-cluster separation
(in [—1,1]). The synthetic datasets contain N = 10,000 sam-
ples across k clusters, with cluster sizes followinga 1:2:...:k
ratio. We incorporate a random number (in [0, 100]) of ran-
domly sampled outliers and set the cluster separation degrees
in [0.16,0.26], spanning partially overlapping to separated
clusters. While Su et al. [65] evaluate configurations up to
k=10 and d = 10, we extend the evaluation to k = 32 and
d =512 in powers of two, creating 45 parameter combina-
tions. Each combination generates three datasets with dif-
ferent random seeds. To assess scalability at higher cluster
counts, we further extend our evaluation with Synth-K, incor-
porating configurations up to k = 128 for d = 2.

For benchmarking performance, we create synthetic
datasets (TimeSynth) with balanced cluster sizes (Cyg = %),
varying N (10K-100K), d (2-5), and & (2-5), following Mohas-
sel et al. [50]. Table 2 summarizes these datasets. Following
standard practice in DP literature [8, 16,47, 65], all datasets
are normalized to [—1,1].

6.2 Utility Evaluation

6.2.1 Metrics

We use the Normalized Intra-cluster Variance (NICV) from
prior work [65] as our primary utility metric. NICV normal-
izes the k-means objective function (Eqn 1) by dividing it by
the dataset size:

1 k
NICV(0) =53 ) Il —ul?
j:1x1€0j

To facilitate systematic comparison across methods for the
synthetic datasets, we summarize each method’s performance
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Figure 3: Scaling of AUC over number of dimensions and clusters.

over different privacy budgets using the area under the curve
(AUC) of NICV values against € € [0.1,0.25,0.5,0.75,1.0],
computed via the trapezoidal rule:

"l NICV; +NICV;,

AUC =
ucC >

- (&iy1 — &) (26)
i1

We evaluate additional metrics in Appendix D.

6.2.2 Real World Datasets

Figure 2 shows the NICV against various privacy budgets on
ten real-world datasets to answer Q1. The shading shows the
95% confidence interval of the mean over the 100 experiments.
We observe that FastLloyd and GLIoyd consistently out-
perform SuLloyd across all high-dimensional datasets (e.g.,
Wine, Breast, Yeast, MNIST). This aligns with our theoreti-
cal expectations as the Gaussian mechanism composes much

more favourably in high-dimensional spaces than the Laplace
mechanism. Additionally, FastLloyd outperforms GLIloyd in
all cases, especially in datasets with low dimensions and a
high number of clusters (e.g., Birch2, S1), where GLIloyd does
not outperform SuLloyd. This highlights the effect of impos-
ing a radius constraint on the protocol, which, as discussed
in Section 5.1, is most restrictive in low-dimensional, high-
cluster settings, further reducing the noise added to the cen-
troids. While all differentially private methods eventually
approach the non-private baseline as privacy budget increases,
FastLloyd achieves this convergence at substantially lower
privacy budgets, establishing it as the superior approach for
DP k-means clustering across all datasets.
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Figure 4: AUC comparison of FastLloyd vs. SuLloyd on the Synth datasets.

Table 2: Summary of Datasets Used in Evaluation

Dataset N d k
Iris [23] 150 4 3
LSun [66] 400 2 3
S1[24] 5000 2 15
House [25] 1837 3 3
Adult [6] 48842 6 3
Wine [1] 178 13 3
Breast [68] 699 9 2
Yeast [51] 1484 8 10
MNIST [41] | 10000 784 10
Birch2 [73] | 25000 2 100
G2 [46] 2048 2-1024 | 2
Synth 10K 2-512 2-32
Synth-K 10K 2 2-128
TimeSynth 10K, 100K | 2,5 2,5
6.2.3 Synthetic Datasets

To answer Q2, we follow an approach similar to Su et al. [65]
and evaluate FastLloyd and SuLloyd on our synthetic datasets
varying both k and d. Figure 4 shows heatmaps of the AUC
values for SuLloyd and FastLloyd on the synthetic datasets. To
clarify the difference between the protocols, Figure 4c shows
the percentage of reduction in AUC of FastLloyd over that of
SuLloyd. From the heatmaps, we observe that FastLloyd out-
performs SuLloyd across all datasets, with the improvement
being more pronounced in higher dimensions and in higher k.

To investigate higher limits, we further extend the evalua-
tion to the G2 [46] datasets with d up to 1024, and Synth-K
datasets with k up to 128. Figures 3a and 3b present a com-
parative analysis of AUC performance across Lloyd, FastL-
loyd, GLloyd, and SuLloyd protocols, evaluated on G2 and
Synth-K datasets. The AUC values are normalized relative to
SuLloyd as the baseline. Figure 3a examines dimensionality
scaling by varying d up to 1024 while maintaining k = 2,
whereas Figure 3b shows cluster scaling by varying k up to
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128 while fixing d = 2. In Figure 3a, we observe that for
low dimensions, all protocols perform very closely to the
baseline (Lloyd), but as the dimension increases, the task be-
comes much more challenging for the private protocols, with
FastLloyd outperforming all others. In Figure 3b, we observe
that FastLloyd outperforms all other protocols across all clus-
ter counts, with the improvement being more pronounced at
higher cluster counts. This is to be expected as the radius con-
straint becomes more restrictive with higher cluster counts,
leading to a more significant reduction in noise added to the
centroids.

Since Su et al. found SuLloyd outperformed all other ap-
proaches for d > 3 [65], and we outperform SuLloyd, we
claim that FastLloyd is state-of-the-art in DP k-means for
d > 3. FastLloyd also fixes the scalability issue that Su et al.’s
work [65] observed in high k and enables us to scale to much
larger dimensions.

6.3 Runtime Evaluation

To answer questions Q3 and Q4, we compare FastLloyd with
the MohLloyd protocol of Mohassel et al. [5S0] on a variety of
common datasets in terms of runtime and communication size
(per iteration). Table 3 shows the summary of the evaluation
with two clients (the setting considered in Mohassel et al.’s
work [50]). Values for MohLloyd are taken as reported in the
paper by Mohassel et al. [50], noting that the setup is similar
to the one used in our evaluation, and the gap in performance
is more than what could be accounted for by different setups.
In terms of runtime, MohLloyd executes in the order of min-
utes, while FastLloyd executes in milliseconds, offering five
orders of magnitude speedup. In terms of communication size,
MohLloyd requires communicating gigabytes of data per iter-
ation, while FastLloyd needs a fraction of a kilobyte, offering
up to seven orders of magnitude reduction in size. In terms of
communication rounds, MohLloyd requires ®([logk]) com-
munication rounds per iteration [31], while FastLloyd only
requires one. Since MohLloyd was found to be the state-of-



Dataset Parameters Runtime (ms) Comm (bytes)
N k d FastLloyd MohLloyd [50] Speedup FastLloyd MohLloyd [50] Reduction
TimeSynth 10K 2 2 3.03+£0.02 10500 3465x 192 2.557e8 1.33e6x
2 5 3.2440.01 - - 384 - -
5 2 432£0.02 34050 7882 % 480 9.746e8 2.03e6x
5 5 495+£0.04 - - 960 - -
TimeSynth 100K 2 2 12.57£0.02 105120 8363 % 192 2.467¢9 1.28e7x
2 5 13.17+£0.03 - - 384 - -
5 2 22.054+0.03 347250 15748x 480 9.535e9 1.99¢7 x
5 5 22564002 - - 960 - -
LSun 400 3 2 26£0.04 1481 570% 288 - -
S1 5K 15 2 5.81+£0.08 49087 8449 x 1440 - -

Table 3: Overhead comparison per iteration against MohLloyd [50] for two clients (100 runs with mean and 95% confidence

reported for FastLloyd)

the-art in secure federated k-means [31], we conclude that
we advance the state-of-the-art while offering output privacy
(which would only further slow down Mohassel et al. [50]).

7 Conclusion

In this work, we designed FastLloyd, a new private protocol
for federated k-means. We have shown that FastLloyd is se-
cure in the computational model of DP and analyzed its utility.
Compared to state-of-the-art solutions in the central model
of DP, FastLloyd results in higher utility across a wide range
of real datasets and scales effectively to larger dimensions
and number of clusters. FastLloyd also achieves five orders
of magnitude faster runtime than the state-of-the-art in secure
federated k-means across a variety of problem sizes. In sum-
mary, we provide an efficient, private, and accurate solution
to the horizontally federated k-means problem.
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Our work develops a new protocol for privately clustering
data. Our primary stakeholders are the data scientists who
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subjects of the analyses whose data is aggregated and an-
alyzed in this protocol. We improve the accuracy, privacy,
and runtime of existing protocols in the private clustering
domain. Simultaneous improvements in all three categories
have positive ethical implications for both stakeholders. Im-
proved privacy protection (input and output privacy) reduces
the risks for both stakeholders. Our accuracy improvements
make the output more useful to the primary stakeholders. Fi-
nally, our runtime improvements reduce the computational
cost and, thus, the environmental impact of conducting the
analysis. All of these improvements incentivize the use of
private protocols over non-private alternatives. While our im-
provements significantly reduce the risks compared to related
work, care must be taken to appropriately communicate the
inherent risks of deploying any protocol that satisfies a similar
security model to both stakeholders.
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A  Proofs
A.1 Proof of Theorem 5.1

Theorem 5.1. [f the constraint (4) is satisfied, then:

k= (.l) _ (f) / <
AT = max 1IR;(D) =R (D)l <m ©)

for all clusters j € [k], and iterations t € [T].

Proof. w.l.o.g assume that the datasets differ by a single point
¥ so that D' = DU {x'}. If ' is not within 1 of &/~ ", it will
not be assigned to O; and thus R;(D) = R;(D'). Therefore,

we only need to consider the case where x’ is at most 1 from
~(t—1)

g . By definition, we have:
(11 (1) = (11
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where the last line follows by (Eqn 4). O

A.2 Proof of Theorem 5.2
We first prove the following helpful lemma.

Lemma A.1. Our noise mechanism (defined in Eqn §8) of
f(D) +ywherey~ N(0,6°T (AY))?) applied over T adap-
tive iterations of f is (é)-GDR where AY) is the sensitivity

of f.

Proof. After choosing o, by Theorem 2.1 from Dong et

al. [15, Theorem 1], we have that each application of a Gaus-
sian mechanism with noise multiplier G is Ag.) -GDP. We
apply the Gaussian mechanism adaptively over T iterations.
Which by Theorem 2.2 from Dong et al. [15, Corollary 2],
gives us AmT\/T-GDP. Thus, by multiplying 6 by vVTAY), we

get é-GDP. O

We now restate and prove Theorem 5.2.

Theorem 5.2. Algorithm I ensures (€(A),d)-IND-CDP-MPC
in the presence of a semi-honest, polynomial time adversary
who controls at most a single party.

Proof. To prove the algorithm satisfies Definition 3.1, we
need to consider the view from each party. We begin with the
view of the server. First, let us assume that each client samples
the random mask r; from a random oracle over R. Under
this assumption, the Enc(-) function satisfies information-
theoretic security as it is a one-time pad using 7; as the pad.
In practice, we implement the sampling of r; using a PRNG
and thus reduce from information-theoretic to computational
security with a negligible term negl()). Therefore, the view
of the server satisfies €(A)-IND-CDP-MPC with € = 0.

Regarding the clients, a client’s view consists of their own
dataset Dy4, and the output from each iteration of the protocol.
We note that the initialization is data-independent and thus is
indistinguishable between neighbouring datasets. Each iter-
ation consists of the assignment and updating of the cluster
centroids. The assignment step uses the published centroids
from the previous iteration (post-processing) to divide the
dataset into clusters. We can then apply parallel composition
over each of the clusters. Thus, we can focus on the privacy
cost of a single cluster for the remainder of the proof.

First, we set ¢ using Theorem 2.3 from Dong et al. [15,
Corollary 1]. We choose the minimum & such that (g, 8)-DP
iff é—GDP by Theorem 2.3. This is equivalent to finding the
noise multiplier for a sensitivity one, single application, of the
Gaussian mechanism with noise multiplier 6. To solve this
minimization, we use Algorithm 1 from Balle and Wang [5].

The updating of the cluster centroid applies the Gaussian
mechanism twice, once to the relative sums and once to the
counts. We split the overall ¢ into 6 and 6€ following Eqn 7.
We begin with the analysis of the relative sum. In Theorem 5.1,
we show that the sensitivity of the relative sum is 1. Applying
Lemma A.1 we get that the relative sum over T iterations is
GLR-GDP. The sensitivity of the count is 1, and thus the count



is GI—C-GDP by similar analysis. Finally, applying Theorem 2.2.

We get that
1 2+ 1)’ 1
oR o) o

27)

and thus the we get é-GDP over the entire protocol which
implies (€,8)-DP (because of how we chose G). Applying
parallel composition over all clusters, the client’s view is
(g,0)-IND-CDP-MPC, with no computational assumption (as
we use the information-theoretic DP properties of differential
privacy). Taking the worst case over the clients and the server,
the result follows. O

A.3 Proof of Quantized DP Noise

We argue why quantizing the DP noise is acceptable in Fig-
ure . In essence, because the sensitive data is already quan-
tized, adding quantized noise to it is equivalent to adding the
noise first and then performing the quantization, which aligns
with the post-processing lemma in differential privacy.

This can be intuitively understood by noting that:

* The data before noise addition is already quantized.

* The sum of a quantized value and a non-quantized value
will only have information of the non-quantized variable
in the less significant bits (i.e., those lost to quantization).

* Hence, quantizing the sum is equivalent to dropping this
lower bit information, which is similar to quantizing the
second variable prior to addition.

We show this formally in the following Theorem.

Theorem A.2 (Quantization and Differential Privacy). Quan-
tizing Laplace noise at the same level of quantization as that
used in the Masked Secure Aggregation (MSA) protocol does
not violate the privacy guarantees offered by differential pri-
vacy.

Proof. We begin by observing that any value, say v, can be
split into two parts upon quantization: the integral part, ¥,
and the fractional part, ¥, such that ¥ x 27 is the (rounded)
integral part of v x 27 (i.e. it is [v x 27]), and ? denotes the
fractional part that gets lost due to quantization. This notation
can similarly be applied to the noise variable, 1.

In our context, the sensitive data we wish to protect is ¥
since the entire protocol operates in a quantized environment,
i.e., v is never transmitted. We aim to demonstrate the follow-
ing equivalence:

B = [ 29+ [ 29 = [(5 1) x 27)

The right-hand side represents quantization applied as post-
processing to the sum of the sensitive data and the noise,
which adheres to the rules of differential privacy.
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Figure 5: Ablation of o and post-processing strategy on NICV
fore =0.1.

After expanding the right-hand side, we obtain:
[(P+m) x29) =[P x29+1 x 2941 x 29]

We can take out ¥ x 27 and 7] x 24 from the rounding opera-
tor because they are exact integers (indeed ¥ x 29 is [v x 29]).
We then obtain:

[(V4+m) x29] = [vx 2] + [ x 29] + [} x 27
However, 1| x 2 will be lost due to quantization, hence:

[(V4+m) x27] = [vx 27 + [ x27] =¥ +1

B Ablation of Parameters

In this section, we empirically justify our choice of
hyperparameter o. and the post-processing strategy. We
choose these parameters to minimize the Normalized Intra-
Cluster Variance (NICV) metric over a set of synthetic
datasets. The synthetic datasets were generated using the
clusterGeneration package [58] varying the number of
dimensions (d) and clusters (k) as (k,d) € {2,4,8,16}2,
resulting in 16 variations. For each variation, we gener-
ate three different datasets with the degrees of separation
{0.25,0.5,0.75}. The average cluster size is fixed to Cpyy =
&](43 and the cluster sizes are randomly sampled in the range
[0.70 - Cayg,1.30 - Cpye), leading to a total dataset size in the
range [1433,2662].



All the ablation experiments were done on € = 0.1. The
results are shown in Figure 5, where we plot the average
NICV over all datasets for different values of o and post-
processing strategies. The average is then divided by the
NICV of the naive baseline of no post-processing and no ra-
dius constraint. We observe that the “folding” post-processing
strategy consistently outperforms the “truncation" and “none”
strategies. We also observe that the “Step” strategy outper-
forms the “Constant” strategy and provides most performance
improvement for o &~ 0.8. We also note that “radius clipping”
provides a consistent improvement. Based on these results,
we choose o0 = 0.8 and the “Step” constraint strategy with a
post-processing strategy of “folding" after “radius clipping”
is applied.

B.1 Error Analysis of Simple Gaussian Mech-
anism

We follow a similar analysis to Section 5.5 to derive the
parameters used for GLloyd. Since we do not modify the
algorithm (only change the noise distribution), we can use Su
et al.’s MSE analysis unchanged:

- S
MSE (1)) ~ 15 (Var () +4p?Var () @8)
Substituting the variance following our noise mechanism

(with the domain-based sensitivity) gives:

3

MSE (ﬁ(’)> ~ 15 (AT(0%)? +4p°T(c9)?).  (29)
Minimizing this using Lagrange multipliers such that:
1\? /1) 1
— — ] == 30
(@) )= o
gives the following ratio of noise multipliers:
d
o¢ = ,/ics 31)
2p
Substituting this back into the MSE equation gives:
5 KBdTo*(2p++/d)?
MSE (,u(t)) ~ (Nz ) (32)

Setting the per iteration MSE to be less than 0.004 and rear-
ranging for T gives:

N?(0.004)
T<
k3dTc2(2p +/d)?

(33)

which we also truncate to be in [2,7].

20

C Extensions

C.1 Serverless MSA

Masked Secure Aggregation (MSA) is at the core of our pro-
tocol and requires a semi-honest server to perform the aggre-
gation. An alternative is for all or a subset of the clients to
take the role of a computation node in an MPC protocol. In
this case, the centroids would be secret shared and aggregated
in MPC, then DP noise would need to be added before release
every iteration. The noise addition can be implemented by
each computation node sampling noise locally and adding it to
their shares. Depending on how many nodes are assumed to be
honest, this will necessarily add more noise than FastLloyd to
ensure privacy in the presence of one or more colluding nodes.
Alternatively, the computation nodes can jointly sample the
noise using the protocol of Wu et al. [69]. The disadvantage
of this approach is that it will add a large computational over-
head. However, it would still be significantly faster than the
strawman solution of applying an end-to-end MPC protocol
such as Mohassel et al. [50] which would also need to sample
noise this way (in addition to their already high computation
cost).

C.2 Local and Shuffle DP

Another way to alleviate the need for a semi-honest server is to
switch to a local or shuffle DP model. However, as discussed
in Section 3.1, this is necessarily less accurate than the IND-
CDP-MPC model that attains central DP accuracy (even when
N; = 1). We note that extending FastLloyd to the local or
shuffle DP model is not advantageous, since the data is already
noised in these models, secure computations are not required.
Thus, improvements in the local and shuffle DP models are a
tangential research direction and not the focus of this work.

D Additional Utility Evaluation

We evaluate our protocol with three metrics: Silhouette
Score [60], Davies-Bouldin Index (DBI) [13], and Mean
Squared Error (MSE). MSE is the average squared distance
between output centroids and ground-truth centroids (from
k-means++ matched via the Hungarian algorithm). Because
MSE is sensitive to outliers, methods without post-processing
(e.g. Sulloyd) can produce extreme MSE values, whereas
FastLloyd remains close to the non-private baseline. For any
single-cluster result, we set Silhouette Score to -1 and DBI to
oo; accordingly, infinite DBI values are omitted in their figure.
Otherwise, all three metrics exhibit similar trends as reported
in Section 6 of the main paper.



2
]
3
3

2

@

Silhouette

0w
)

S
=
o

MSE

=

e Sulloyd e FastlLloyd GLloyd e Lloyd
0.325 0.55 050 0.5
03001+ 0.4 o4
0.275] = = =— | o050 2 02 PRLEY .
; | £ 5 z g
0.250 3045 3 g 000 303
0.225 % o040 / 5o 7 -025 o2 \ ™~
0.200 0.35 —02 -0.50 0.1
0.175
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
€ € € € €
(a) Adult (b) Birch2 (c) Iris (d) Breast (e) Yeast
0.65
0.50 0.0
0.38 s 0.60 0.2 f .
o 0'40 2055 g 00 o e
0. = ® @ -0.4
0.36 % o35 é 0.50 é -0.2 é
= = = =-0.6
034 ?0.30 5 0.45 704 &
0.25 0.40 Bl B = s e s = 084
032 0.20 -0.8 -1.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
e e e e e
(f) House (g) LSun (h) S1 (i) Wine (j) MNIST
Figure 6: Silhouette Score vs € for real datasets.
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Figure 8: Mean Squared Error (Centroid Alignment) vs € for real datasets.
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