arXiv:2306.08538v2 [cs.CR] 16 Apr 2024

Fast and Private Inference of Deep Neural Networks by Co-designing Activation
Functions

Abdulrahman Diaa“!, Lucas Fenaux*!, Thomas Humphries*l, Marian Dietz!, Faezeh Ebrahimianghazani’,

1

Bailey Kacsmar!, Xinda Li!, Nils Lukas!, Rasoul Akhavan Mahdavi!, Simon Oyal, Ehsan Amjadianl’ 2,
and Florian Kerschbaum!

'University of Waterloo
ZRoyal Bank of Canada
{abdulrahman.diaa, lucas.fenaux, thomas.humphries, marian.dietz, fSebrahi, bkacsmar, xinda.li, nlukas,
rasoul.akhavan.mahdavi, simon.oya, ehsan.amjadian, florian.kerschbaum}@uwaterloo.ca

Abstract

Machine Learning as a Service (MLaaS) is an increasingly
popular design where a company with abundant computing
resources trains a deep neural network and offers query access
for tasks like image classification. The challenge with this
design is that MLaaS requires the client to reveal their po-
tentially sensitive queries to the company hosting the model.
Multi-party computation (MPC) protects the client’s data by
allowing encrypted inferences. However, current approaches
suffer from prohibitively large inference times. The inference
time bottleneck in MPC is the evaluation of non-linear layers
such as ReLLU activation functions. Motivated by the success
of previous work co-designing machine learning and MPC,
we develop an activation function co-design. We replace all
ReLUs with a polynomial approximation and evaluate them
with single-round MPC protocols, which give state-of-the-
art inference times in wide-area networks. Furthermore, to
address the accuracy issues previously encountered with poly-
nomial activations, we propose a novel training algorithm
that gives accuracy competitive with plaintext models. Our
evaluation shows between 3 and 110x speedups in inference
time on large models with up to 23 million parameters while
maintaining competitive inference accuracy.

1 Introduction

The rapid development of increasingly capable machine learn-
ing (ML) models has resulted in significant demand for prod-
ucts like machine learning as a service (MLaaS). In this sce-
nario, big tech companies with vast computing resources train
large machine learning models and provide users with query
access. The major pitfall with MLaasS is that it requires clients
to submit potentially sensitive queries to an untrusted entity.
A promising solution to this problem is to employ cryptogra-
phy to ensure the queries and inferences are hidden from the
model owner. Secure inference is an active field of research

*Equal contribution

96 LI e T T T TT]
*
9% .
®]
T4 *
g
5 92 .
Q
<
é A This Work
90 - m COINN[18] ||
¢ GForce [31]
@ CryptGPU [35]
88 Lo I Lol L I
10! 10?

Inference Time (s)

Figure 1: Summary of the inference time in seconds vs. test
accuracy for each state-of-the-art approach on the CIFAR-10
dataset in the WAN (100 ms roundtrip delay).

with many solutions and different threat models as summa-
rized in a recent SoK [32]. The challenge is that despite recent
advances, the inference times are still prohibitively large com-
pared to plaintext inferences.

This work focuses on reducing the runtime of secure infer-
ence on image data, under realistic network conditions, while
maintaining classification accuracy. We consider the two-
party setting using multi-party computation (MPC), where
the server holds the modified ML model, and the client holds
the data to query the model. Recent state-of-the-art works in
this space employ various co-design approaches to reduce
the inference time [32]. For example, COINN co-designs ML
models optimized for quantization with efficient MPC proto-
cols tailored to the custom models [18]. COINN substantially
compresses the model and makes numerous optimizations
to the architecture to achieve fast inferences. Another ex-
ample is GForce, which tailors the cryptography needed for
ML to high-speed GPU hardware [31]. By offloading vast

amounts of work to the pre-computation phase, they are able
to achieve state-of-the-art runtime and accuracy in secure in-
ference [31]. Similarly, CryptGPU [35] modifies the CrypTen
framework [22] to run efficiently on the GPU and give state-
of-the-art inference times in wide area networks. However,
despite making major steps towards practical inference, none
of these works remove a crucial bottleneck in secure inference:
the non-linear layers.

It is well known that the non-linear layers are the bottleneck
of secure inference [12, 13, 18,29]. This is because secure
computation on arithmetic shares is optimized for multiplica-
tions and additions, instead of non-linear layers such as ReLU
activation functions or MaxPool layers. In order to compute
these non-linear functions, expensive conversions between
different types of MPC protocols are required. Specifically,
in more realistic network settings with high latency, the infer-
ence time is substantially degraded due to each conversion
taking many rounds of communication. This problem is par-
ticularly prevalent in deep neural networks (DNNs), where a
non-linear activation separates each of the many linear layers.

This work addresses the non-linear layers by taking a co-
design approach between the activation functions and MPC.
We take the approach of replacing classic ReLLU activation
functions with a polynomial approximation during training
and inference to avoid conversions altogether. Previous work
has considered this approach but with limited success [12].
We propose two modifications to make this approach practi-
cal. First, we develop and evaluate new single-round MPC
protocols that give the fastest evaluation of polynomials to
date. The challenge with using polynomials is they severely
impact model accuracy [12, 18,29]. Previous work could not
successfully train DNNs with more than 11 layers due to
exploding gradients [12]. Thus, our second contribution is
tailoring the ML training process to ensure high accuracy and
stable training using polynomials. Our approach utilizes a
new type of regularization that focuses on keeping the input
to each activation function within a small range. We achieve
close to plaintext accuracy on models as deep as ResNet-
110 [16] and as large as a ResNet-50 on ImageNet [10] (23
million parameters). The combination of these approaches
yields a co-design with state-of-the-art inference times and
the highest accuracy for polynomial models.

We compare our work with three solutions representing the
state-of-the-art approaches in secure inference according to
Ng and Chow [32]. We summarize our results in Figure 1.
Combining the single-round MPC protocols with our acti-
vation regularization achieves significantly faster inference
times than all other solutions. Specifically, our solution is
faster than CryptGPU by 4 x, GForce by 5x, and COINN by
40x on average in wide area networks. Our approach also
scales to large models on ImageNet with a 110x speedup
over COINN, 14 x speedup over Cheetah, and a 3x speedup
over CryptGPU. Furthermore, our inference accuracy remains
competitive with all other solutions. CryptGPU often gives

slightly higher accuracy as it can evaluate any plaintext model
(albeit slower than our work). Thus, the challenge for future
work is to further close the ML accuracy gap between plain
and polynomial models.

2 Background

2.1 Multi Party Computation

Secure multi-party computation (MPC) allows a set of par-
ties to jointly compute a function while keeping their in-
puts to the function private. We focus on a variant of MPC
which performs operations over shares of the data [5]. We use
[[s]] = [[s]a, [s] 8] to denote that the value of s is shared among
participants, where [s]4 is the share held by party A and [s]
by party B. Arithmetic MPC protocols utilize a linear secret
sharing scheme, such as an additive secret sharing scheme to
compute complex circuits using combinations of additions
and multiplications. Given constants vy, vy, v3 and shares of
values [[x]], [[¥]], one can locally compute

Vi) +ve]l +vs = [vi-x+v2 -y +vs3]])

to obtain shares of the value v; - x+ v, -y + v3. For multipli-
cation, one can use Beaver’s trick to multiply using a single
round of communication between parties [4]. Specifically, we
assume a triplet of random numbers a, b, c (called a Beaver
triplet) was generated such that a - b = ¢ and secret shared
among all parties ahead of time (typically in an offline pre-
computation phase). Then the parties compute [[x - y]] by
first locally computing [[a +x]] = A and [[b+y]] = B and
reconstructing A and B so that both parties have them in
plaintext. This reconstruction is the single round required.
Using these values, the parties compute the result locally as
[[x-¥]] =A[]] + (=B)[[a]] + [[c]], using the linearity property
in equation 1.

Arithmetic MPC protocols are limited to basic multiplica-
tions and additions. Thus, for computing non-linear operations
such as comparisons, other techniques such as converting to
binary secret shares or using Yao’s garbled circuits are com-
mon [9]. A binary secret sharing scheme is an arithmetic
scheme carried out bitwise in the ring Z,. Specifically, the
difference is that we first decompose x into its bits and have
a separate arithmetic share of each bit. By maintaining this
bitwise structure, operations such as XOR or bit shifts are
trivial. We describe how to use a binary and arithmetic secret-
sharing scheme together to compute non-linear functions in
Section 3.3.

2.2 Neural Network Inference

We consider DNN classifiers with domain X C R? and range
Y C R°. DNN classifiers consist of a sequence of layers,
each performing either a linear or a non-linear operation. The

ResNet [16] architecture we consider is composed of (i) con-
volutional, (ii) fully connected, (iii) pooling, (iv) batch nor-
malization, and (v) ReLU layers. All layers are linear, except
for ReLU(x) = max(x,0) and max pooling (that can be re-
placed with average pooling). To classify an input x, a classi-
fier h, passes the input sequentially through each layer. Upon
reaching the last layer, the prediction is obtained by taking
arg max;c(y_cyh(x);, where we call & the logit function for a
classifier 4 : X — 9. Our work is tailored to securely perform
the inference phase. Specifically, for an encrypted input x we
compute the encrypted output /(x) of the logit function. How-
ever, to achieve improvements during inference, our work
requires modification to the training phase that generates /.

3 Problem Setup and Motivation

3.1 Problem Setup

We follow the same threat model as prior work for two-party
secure inference [18,22,29,31]. Specifically, we follow the
two-party client-server model where the server has a machine
learning model (a DNN) they have trained (with our tech-
nique), and the client holds private data upon which they
would like to make an inference. Like Delphi [29], our work
assumes the server uses a modified training procedure. The
server’s input to the protocol is the weights of their trained
model, which they do not want to leak to the client (due to
intellectual property or protecting their MLaaS business [36]).
The client has a private input (typically an image) they would
like to classify using the model but do not want to leak this in-
put or the prediction to the server. That is, the MPC function
can be written as f(image, model) = (/abel,0). Following
previous work [18,22,29,31], we consider the semi-honest
model [15, §7.2.2], where adversaries do not deviate from
the protocol but may gather information to infer private in-
formation. Also, in line with previous work, we assume the
model architecture is known to both parties. This includes the
dimensions and type of each layer, parameters such as field
size used for inference, and the mean and standard deviation
of the training set [22].

Our goal is to reduce the inference time as much as possi-
ble. We are willing to incur a small degradation in accuracy
to achieve practical runtimes. For example, in the streaming
setting, applications like spam detection are runtime-critical
(a small accuracy trade-off can be tolerated to make it fea-
sible). Since all the protocols we compare with contain pre-
computation, we focus on the online phase for fair compar-
ison. Furthermore, the online time determines the latency,
which we focus on reducing in this work. We build from
CrypTen [22], which does not implement pre-computation
and rather assumes a third-party dealer for Beaver triplets.
However, in practice, the server and client could generate the
Beaver triplets in a pre-computation phase using off-the-shelf
protocols [21,33].

3.2 Privacy During Model Training

We focus only on the inference phase of machine learning.
However, the privacy of the training process and training data
is an orthogonal but essential problem. We recommend that
the data owner take appropriate steps to protect the privacy
of the model, such as training using differential privacy [2]
or rounding the output of the inference. Furthermore, during
training, care should be taken to protect against threats such
as model stealing, which can be launched using only the in-
ference result [19]. To summarize, the model owner learns
nothing other than the fact a query was made. We ensure only
the inference is revealed to the client; however, ML attacks
that only require black box query access [19] must be de-
fended against during the training process. Since we focus the
effects of MPC on the runtime and accuracy of ML inference,
we did not conflate this comparison with additional privacy
preserving training goals. Any privacy-preserving technique
would add a similar overhead (e.g., reducing the accuracy) to
all approaches we evaluate.

3.3 Motivating the Co-Design of Activation
Functions

It has been well established in the literature that activa-
tion functions such as ReLU are the bottleneck in MPC-
based secure inference, taking up to 93% of the inference
time [12, 13, 18,29]. The reason for this is that current ap-
proaches use different types of MPC protocols for a model’s
linear and non-linear layers [18,20,22,29,31]. The linear lay-
ers are typically computed using standard arithmetic secret-
sharing protocols tailored for additions and multiplications.
The non-linear layers are computed using garbled circuits
or binary secret share-based protocols. The bottleneck in
wide area networks is typically the conversions between these
protocols as they require a large number of communication
rounds. A typical DNN architecture has many linear layers,
each followed by a non-linear layer resulting in a prohibitively
large number of conversions.

Consider CrypTen, a PyTorch-based secure ML library, as
a baseline approach [22]. CrypTen uses binary shares to evalu-
ate boolean non-linear layers such as ReLUs and MaxPooling
layers. Specifically, all linear layers are computed using stan-
dard multiplication and addition protocols over arithmetic
shares. To compute [[ReLU (x)]] at each layer, [[x]] is first con-
verted to binary shares using a carry look-ahead adder. Once
in binary shares, CrypTen extracts the sign bit to compute
[[x > 0]] (a local operation). The sign bit, [[x > 0]], is then
converted back to arithmetic shares (trivial for a single bit)
and multiplied with [[x]] to get [[ReLU (x)]]. The problem with
this approach is that each conversion takes O(log(L)) com-
munication rounds. Taking into account the additional round
needed for multiplication, we observe nine communication
rounds per ReLU in practice (under 64-bit precision). Re-

cently, more sophisticated MPC protocols have been proposed
that reduce the number of rounds needed for comparisons in
arithmetic shares [6, 7] or reduce the cost of binary share
conversions [11]. However, even if one were to implement
these protocols in CrypTen, the number of rounds needed for
non-linear layers would still outweigh the number needed for
linear layers.

Motivated by this bottleneck, several works have focused
on either reducing the number of ReLLUs or replacing ReLUs
altogether [12, 13,20,24,29,30]. One approach is to approxi-
mate each ReL.U with a high degree polynomial [12,24]. The
advantage of using polynomials is that polynomials can be
computed using arithmetic shares, thus removing the need
for expensive conversions and improving the total inference
time. A significant challenge with polynomials is maintaining
model accuracy [12,13, 18,20, 29].

Thus, this work aims to provide a secure inference protocol
with state-of-the-art inference time and accuracy in realistic
networks with high latency. To do this, we take a co-design
approach to balance accuracy and fast inference time. In Sec-
tion 4, we develop MPC protocols that achieve the fastest
evaluation of polynomials to date, assuming a modified ML
architecture. In Section 5, we tailor the ML training procedure
to achieve high accuracy using this modified architecture.

4 Faster Evaluation of Polynomials

In this section, we evaluate the speed-up of replacing ReLU’s
with a naive polynomial approximation. We then develop our
single-round protocols and show that they drastically reduce
the activation function evaluation time in wide area networks.

4.1 The Polynomial Advantage

To highlight the speed-up of polynomials over standard Re-
LUs, we first evaluate the runtime of a single layer with 213
ReLU activation functions in Figure 2. (See Section 6 for
more implementation details.) First, we plot an unmodified
version of CrypTen (using CryptGPU [35]) with the con-
version to binary shares. Next, we replace the ReLU with a
degree four polynomial fitted using least squares polynomial
regression (see Section 5 for the details). We can see that using
polynomials in off-the-shelf CrypTen is much faster across all
network speeds than the default mixed arithmetic and binary
protocol. This difference becomes more pronounced as we
add more network delay or scale to deeper models with more
ReLUs.

Despite the significant speed-up, naively computing a poly-
nomial is still expensive in MPC with a non-trivial number
of communication rounds. For example, Horner’s method (an
iterative approach to evaluating polynomials) uses O(n) com-
munication rounds (where 7 is the degree of the polynomial).
However, most MPC libraries (including CrypTen) use the
square-and-multiply algorithm for exponentiation, followed

—— CryptGPU
—— CrypTen Poly

—— ESPN
—— Honeybadger

0.5+

o o o
[N} [>

Total inference time (s)

e
=

o
=)

0 20 40 60 80 100
Roundtrip delay (ms)

Figure 2: Benchmarking the secure evaluation of ReL.U acti-
vation functions using various approaches. The x-axis is the
network delay in ms and the y-axis is the mean runtime in sec-
onds averaged over 20 runs with the shaded area representing
the 95% confidence intervals.

by multiplying and summing the coefficients locally. The
square-and-multiply algorithm requires O(log(n)) multipli-
cations (and thus rounds) in MPC. In practice, the default
square and multiply implementation in CrypTen uses two
rounds per ReLU for a degree four polynomial. To increase
the advantage of using polynomial activation functions even
further, we develop a new single-round protocol for evaluating
polynomials in MPC.

4.2 ESPN: Exponentiating Secret Shared Val-
ues using Pascal’s triangle

We present our single-round, highly parallelizable protocol
ESPN for computing high-degree polynomials. The funda-
mental idea is utilizing the binomial theorem (Pascal’s trian-
gle) to achieve faster exponentiation. We begin by describing
our protocol for raising a number [[x]] to the power &, in MPC
(see Algorithm 1 for an overview). Using the additive secret
sharing scheme, the exponentiation corresponds to (x4 + x5)~
where x4 represents the first party’s share and xp represents
the second (such that x4 + xg = x). The binomial theorem
expands this expression as:

k
X =(xat+axp)f=Y (f) X @)
i=0
We observe that, for each i in the sum, party A can com-
pute a; = xf‘_i without needing to communicate with party
B (Alg. 1 line 4). Similarly, party B can compute xj without
communicating with party A (Alg. 1 line 5). Finally, (Il‘) can
be computed by any party (or pre-computed ahead of time).

For simplicity, we assign the computation of ('l‘) to party B.
Thus party B computes b; = (k)x};.

Once each party has compuéed their respective vectors, we
multiply a; - b; for each 7 in parallel (Alg. | line 6). We carry
out this multiplication using standard MPC protocols in one
round. To use these multiplication protocols, each party must
have a share of the input. We use a trivial additive secret
sharing, where the other party inputs zero as their share to
the protocol (Alg. 1 line 2). Finally, after the multiplication,
the sum of the binomial theorem can be efficiently computed

with no communication (Alg. | line 7).

Algorithm 1 Exponentiation Protocol for 2-party additive
secret-sharing

1: procedure Exp([[x]],k)

2 a = [[04]], b = [[0%]] > Initialize shares
3 fori=0:kdo

4 Party A computes: a; = a; +x§_i

5 Party B computes: b; = b; + ()

6 p = BeaverMultiply(a,b) > Parallel Multiplication
7. s=Yopi >s=a-b
8 return s > secret-shares of x

4.3 Polynomial Evaluation with ESPN

Floating Point Considerations. Our initial description of
ESPNconsiders the integer domain for simplicity. Extending
to floating point values is straightforward but requires rescal-
ing (a standard practice in fixed-point arithmetic). We use
CrypTen’s two-party, local truncation protocol to ensure we
do not incur additional rounds. However, there is a negligible
chance of an incorrect result from this truncation protocol due
to wrap-around in the ring. Specifically, the probability of an
incorrect result when truncating x is 2%‘ where 2 is the size
of the ring [22, Appendix C.1.1]. This implies that x must be
small compared to the ring for this fast truncation protocol to
be correct.

Polynomial Evaluation Protocol. Using our exponentia-
tion protocol, we show how to compute high-degree polyno-
mials efficiently in a single round. We overview the protocol
in Algorithm 2. First, in parallel, we compute all needed
exponents using Algorithm 1. We recall that to ensure the
correctness of truncation, we must ensure all intermediate
values remain small. For simplicity, we define small to be that
no intermediate scale becomes larger than twice the work-
ing precision p. We show the complete failure probability
calculations of Algorithm 2 in Appendix E.

To ensure the values remain small after exponentiation, we
create multiple scaled-down copies of the input x, propor-
tional to each exponent we need to calculate. To compute
x we first scale x down by 2% where § = [(i —2)p/i]) and

p is the current working precision of x (line 5). § is chosen
such that 2”7 becomes approximately 22r/1 after scaling and
thus approximately 227 after exponentiation by i. These are
approximations as not all values of i divide (i — 2)p, so there
is some error from taking the ceiling. To account for the ad-
ditional factor of approximately two, we do an additional
rescaling after each exponentiation in line 7. This rescaling
incorporates § (which includes the ceiling function) to ensure
all values are scaled back to 27”. Finally, after computing all
powers, we can locally multiply the result by the coefficients
(public values) and sum in line 8. We give a complete proof
of correctness for Algorithm | and 2, including the truncation
operator in Appendix E.

Algorithm 2 Polynomial Evaluation Protocol for 2-party ad-
ditive secret-sharing

1: procedure Poly([[x]], o, n)

2 P11 =x

3 fori=2:ndo > In parallel
4 Lets=[(i—2)p/i] > Scale down factor
5: xp=x-27% > Scale down before Exp
6 pi = Exp(x},i) > From Algorithm 1
7 p, = p;*2 7=+ Scale down after Exp
8 y=0o+Yi 0 p; > Locally dot product
9 return y > Secret-shares of f(x)

Hyperparameter Restrictions. While Algorithm 2 is de-
signed to keep intermediate values small, multiple hyperpa-
rameters determine the protocol’s effectiveness. Using results
from Appendix E (namely the max of Theorem E.2 and The-
orem E.3), we get that the probability of failure for a given
truncation is bounded by

on([logy M]+1)+2p

Pr|Truncation Failure] < 5L

3

For our experiments, we use CrypTen, with L = 64 [22]
and a default working precision of p = 16. Assuming default
values of n =4 and A = 5 we get a failure probability bound
of 2716, However, this is a pessimistic upper bound since
we consider the worst-case input of 5. Conversely, in our
experiments, we find that the distribution of inputs follows an
approximately Laplace distribution as shown in Appendix C.
Thus, we observe a much smaller empirical failure probability.

While our default parameters were experimentally chosen
to give high classification accuracy (Section 6, shows a minor
degradation over plaintext accuracy), it is unclear if these val-
ues are optimal. For example, one approach to reducing the
failure probability is to decrease p from 16 to 10-bit (which
gives a failure probability of 272%). However, the trade-off
is that the intermediate x| values will be truncated severely.
For instance, with n = 4, x§ will be truncated to 5-bits. We
find that this loss of precision is too significant to simulate a

ReLU function accurately. Similarly, while a higher degree
polynomial might better approximate a ReLU, a higher de-
gree will negatively affect both the failure probability and the
precision loss of x/. Future work could conduct an extensive
hyperparameter search of all parameters to find the optimal
trade-off. However, as we see in Section 6 (Tables 2-5), this
would at most yield a 0.5% increase in encrypted classifica-
tion accuracy (PyTorch vs. CrypTen accuracy), for the worst
model and dataset.

Evaluating Algorithm 2. In Figure 2, we plot this approach
alongside the previous approaches to evaluate the runtime.
ESPN incurs slightly more overhead in the LAN setting; how-
ever, it scales significantly better (the confidence intervals do
not overlap) to wide area networks that can be expected in
practice.

4.4 Alternative Single Round Protocol: Honey-
Badger

Like ESPN, Lu et al. give a single round protocol for expo-
nentiation in MPC [28]. Despite focusing on a completely
different problem (anonymous communication), they provide
an MPC protocol of independent interest for exponentiation,
which we also utilize in our work. They take a very different
approach to our work that yields different trade-offs. Instead
of the binomial theorem, their work utilizes the following
factoring rule

k= (x—7r) Z A 4)

where r is a random secret-shared number derived during
pre-computation. We assume each party has a share of x and
a share of # fori € {1,...,k} before beginning the protocol
(instead of the more common Beaver triplets). The first step
in the protocol is to compute and reveal x — r (x blinded by r),
which uses a single round. Once revealed, this value becomes
a public constant C. After some algebraic manipulation of (4),
Lu et al. obtain a recursive formula for x'7/ given below.

k—1
I R M I

14

Using dynamic programming, the parties can then compute
any power (x*r°) using only additions of previously computed
terms and powers of r. To compute polynomials using this
protocol, we simply swap the call to Exp in line 6 of Algo-
rithm 2.

The advantage of Lu et al.’s protocol is that the communica-
tion is small (only the opening of x — r). The primary disadvan-
tage is that the protocol requires a modified pre-computation
phase, which is as difficult to pre-compute securely as the
original problem (it is exponentiation). On the contrary, our

binomial protocol uses standard Beaver triplets commonly
found in MPC frameworks. There are well established proto-
cols for efficiently computing these triplets, and the parties
may already have them due to the popularity of Beaver’s trick.
A more minor disadvantage of Lu et al.’s solution is that,
while the protocol requires very little communication, it is
not locally parallelizable as each dynamic programming step
depends on the previous one. In contrast, our entire protocol
can be executed in parallel.

We also consider the runtime of using HoneyBadger in
Figure 2. We emphasize this is a runtime-only evaluation.
Without our training algorithm in Section 5, none of the
polynomial-based solutions can attain usable accuracy. We
find that ESPN and HoneyBadger perform similarly in prac-
tice, with HoneyBadger gaining a slight advantage in very
low network delay. Due to the pre-computation trade-offs, we
will evaluate both approaches for the remainder of this work.

5 PILLAR: Polynomial Activation
Regularization

Our initial benchmark in Section 4 showed a significant speed-
up when replacing ReLU functions with polynomials im-
plemented using ESPN and HoneyBadger. However, a no-
table challenge neglected thus far is that replacing a ReLU
with a polynomial can drastically reduce the accuracy of the
model [12, 18]. This section discusses the causes of the ac-
curacy degradation and describes our mitigation techniques.
Finally, we give empirical results showcasing the high ac-
curacy of our modified training procedures across various
architectures and datasets.

5.1 The Problem with Polynomial Activation
Functions

Escaping Activations. The first step in replacing an acti-
vation function with a polynomial is to design a polynomial
that closely approximates the original function. A common
approach for this is the least-squares polynomial fitting. In
this approach, a table of values is created for the polynomial
over a small discretized range of values. This creates a system
of equations for the polynomial coefficients that can be solved
with least squares. The challenge with this approach is that,
outside of this range, the polynomial no longer resembles the
original activation function and often diverges rapidly. This
leads to a problem called escaping activations, first identified
by Garimella et al. [12]. If one naively swaps a ReLU for its
polynomial approximation, all weights will become infinite
within a few training epochs. We give an example of this
degradation in Figure 3. We can see that, without modifying
the training procedure, a polynomial can completely destroy
the accuracy.

—— unmodified training —— our training
——————————————— 80
0 1.0
g 60 2 o8 0%
) = —-200 g >
3 o) T 60 0
© 0 c 0.6 o
540 5 (] =1
2 2 s 0 s o 509
$ g —-400 E 0.4 g
720 S 3 steps before NaN o 20]
& < 600 2 steps before NaN 802 ©
- —— poly-relu
o poly 0.0 30
2 4 6 8 -10 0 10 20 1077 1073 1073 10t

Polynomial Approximation Degree

Figure 3: Accuracy of a 2-layer convolu-
tional network trained with varying de-
grees for the polynomial activation func-
tion.

To illustrate the problem more clearly, we conduct an ex-
periment using a polynomial of degree four fitted on the range
[—5,5] (A=5) as the activation function for a three-layer model
on CIFAR-10 [23]. In Figure 4, we plot this polynomial activa-
tion function and the {.-norm of the input and output to each
activation function. We note that, with no modification (ex-
cept replacing ReLLUs with polynomials), the weights of this
model become undefined within approximately three epochs
of training. First, we note the divergent behaviour of the poly-
nomial outside the fitted range. Second, we observe the effect
of the divergence on the outputs of the activation function.
Specifically, we wait until the model weights become unde-
fined (NaN in Python) and then observe the behaviour leading
up to the explosion. We can see that three steps before the
model weights become undefined (NaN), the input values of
each activation are out-of-range, but the outputs still behave
similarly to a ReLU. However, in the next iteration (two steps
before NaN), a single value in the first layer goes too far out
of range. This causes a ripple effect for the other two lay-
ers, creating an extremely large output (approx —2000) in the
final activation function. This large value creates a large gradi-
ent, and after another iteration of training, the values become
so large that the gradients (and weights) become undefined
(NaN). We find that minimizing the classification loss alone
is not enough to keep the model in range as the gradients
explode before decreasing the loss.

Truncated Polynomial Coefficients. An additional chal-
lenge is that we will evaluate the fitted polynomial in a finite
ring with limited precision. This significantly impacts the
polynomial coefficients, which tend to be relatively small,
especially for the higher-order terms. Specifically, these small
coefficients can get truncated to zero in limited precision,
which causes the polynomial to diverge even inside the fitted
range. We give an example of this in Appendix C.

Activation Input

Figure 4: Illustrating the escaping acti-
vation problem for the two layers con-
volutional network.

Regularization Coefficient

Figure 5: The effect of the regulariza-
tion coefficient, f on model accuracy
and out-of-range ratio for y= 10

5.2 Defining PILLAR

Our approach, which we call PILLAR, is the combination
of the components we describe in this section. Activation
function regularization is our primary approach for mitigating
escaping activation functions. However, to scale to larger mod-
els, we find that the additional steps of clipping, regularization
warm-up, and adding batch normalization are beneficial.

Quantization-Aware Polynomial Fitting. We begin by
solving the problem of truncated polynomial coefficients. To
address this, we fit the polynomial with the precision con-
straint in mind. We do this by using mixed integer non-linear
programming. Let X be the set of all values between [—A, Al
in p-bit precision (the domain we want to fit on). First, we
generate Y = ReLU (X)) - 27, a table of values for a standard
ReLU scaled up by the precision. Scaling the output of the
ReLU allows us to work in the integer domain (similar to
fixed point arithmetic). We then compute a matrix B where
each column is the different powers of X used in a polynomial
B=[x%x"x2 ..

Next, we solve the system AB =Y for A using mixed inte-
ger linear programming with A € [-27 — 1,27 — 1] to get the
coefficients A that minimize the error between the polynomial
AB and the ReLU values Y. Finally, we scale the resulting
coefficients down by 27. We note that A € [-2P — 1,27 — 1]
corresponds to coefficients being bounded by [—1, 1] after we
scale down. We empirically choose p = 10 for all polynomi-
als during the ML training. As we observe in Appendix C,
our quantized polynomial fitting addresses the problems of
exploding activations within the range. However, the issue of
going out-of-range requires additional treatment.

Activation Regularization. Following the observations of
Section 5.1 and Garimella et al. [12], it is clear that mini-
mizing the classification loss alone is not sufficient to pre-

vent escaping activations. Garimella et al. proposed QualL, a
method that trains one layer of the model at a time, focusing
not on classification accuracy but the similarity of the layer
to a standard ReLLU model [12]. QualL showed much better
accuracy than naive training but only scaled to models with
at most 11 layers.

In our work, we address the cause of the problem directly
by regularizing the input to each activation function during
training. We add an exponential penalty to the loss function
when the model inputs out-of-range values to the polyno-
mial activation function. Let x be the input to the activation
function, and A, be the upper bound of the symmetric range
[—Areg, Mreg] in which we would like the input to be contained.
Then, we define our penalty function as

plx)= (}L;)y ©)

where 7y is a large even number (to handle negative values)
determining the severity of the penalty. We find that values
between six and ten work best in practice, with y = 10 being
the default in our experiments. This penalty function gives
negligible penalties (less than 1) for |x| < A, and rapidly
grows (in the degree of) as |x| > Ayeq.

We aggregate p(x) over I, the set of inputs to all activa-
tion functions, by taking the average over each activation
layer in the model. After aggregation, we scale the penalty
using a regularization coefficient 3 and add it to the existing
cross-entropy loss function of the model ¢.. Specifically, the
modified loss function ¢’ is defined as:

(0= 6O+ DY p)

xel

where K is the number of activation layers in the model. This
allows us to tune the importance of classification loss vs. the
cost of going out-of-range.

Clipping. Although activation regularization teaches the
model not to go out-of-range over time, the model still needs
to avoid going to infinity during the early stages of training.
Thus, during training, we apply a clipping function to the
input of the activation function such that if any input goes out
of range, it is truncated to the range’s maximum (or minimum)
value. This clipping function does not affect the penalty as
it is applied after the penalty function has been computed.
We emphasize that this clipping function is only used during
training and is removed during inference. The intuition is
that the model should learn not to go out-of-range during
training and thus no longer requires this clipping function
during inference. Additionally, we find that setting the A, of
the penalty to be smaller than the range used for polynomial
fitting (and clipping) can yield even better results. This is
because the polynomial will be accurate for a larger range
outside of the range the model was regularized to stay inside,
allowing an extra buffer in case of failure during inference.

Dataset Model Plain Accuracy =+ CI
ReLU PILLAR
MiniONN 91.2+0.17 88.1 £0.26
Cifar10 VGG 16 92.6+0.16 90.8 £0.11
ResNetl8 94.7+0.09 93.4+0.14
ResNet110 92.8 +0.27 91.4+£0.18
VGG 16 70.9 £ 0.17 66.3 £0.22
CIFAR-100 ResNet32 68.4+0.46 67.8+0.32
ResNetl8 76.6 +£0.07 749 +0.14
ImageNet ResNet50 80.8 71.7

Table 1: Plain-text Accuracy of PILLAR (5 runs).

Regularization Warm-up. We find the minimum require-
ments for successfully training a model with polynomial ac-
tivation functions are activation regularization and clipping.
However, for larger models, the penalty term can be extremely
large in the first few epochs (until the model learns to stay
in range). In some cases, the loss can become infinite due
to our regularization penalty. To address this challenge, we
adopt a regularization scheduler for the first four epochs that
slowly increases both y and f to the values used for the rest
of the training. Empirically, the following schedule works
well and avoids infinite loss. We let Y € {4,6,....7,7,...}

and B € {B/100,/50,8/10,B/5,8.B.-.. }.

BatchNorm Layers. Garimella et al. also investigated us-
ing normalization to help prevent the escaping activation func-
tions [12]. They proposed a min-max normalization approach
where each layer’s minimum and maximum values are ap-
proximated using a weighted moving average of the true mini-
mum and maximum. These values are frozen during inference.
Garimella et al. observed that this approach alone was insuffi-
cient, as activations still escaped the range during inference.
We observe this operation is similar to the batch norm layer
commonly added to ML models. The main difference is that
the mean and standard deviation of the batch are used to nor-
malize the layer instead of the minimum and maximum values.
By fixing the approximation of the mean and standard devia-
tion during inference (following CrypTen [22]), this operation
is very efficient in MPC. We study the effect of BatchNorm
in Appendix A. We find that batch norm layers considerably
improve the accuracy of PILLAR. This is an intuitive result as
batch normalization helps to keep each layer’s output bounded
and thus reduces the work of our regularization function.

Summary of PILLAR We refer to PILLARas the combi-
nation of all components described in this section. We note
that the clipping and regularization warm-up components are
used (only during training) to enable regularization by pre-
venting the model from going to infinity. The regularization

component ensures that the model will stay in range during
inference. All three of these components play a crucial role
in the success of PILLAR, as removing any of them will re-
sult in a model with unacceptable accuracy (due to infinite
weights or escaping activations). The batch norm is the only
optional component, which we give a small ablation study
over in Appendix A.

5.3 Measuring PILLAR’s Effectiveness

The Regularization Coefficient. To show the effect of our
regularization and coefficient B, we conduct an experiment
using the same three-layer model on CIFAR-10 from Sec-
tion 5.1. In Figure 5, the left y-axis gives the out-of-range
ratio (OOR), defined as the ratio of activation function in-
puts that were not within the interval [—35, 5]. The right y-axis
is standard classification accuracy, and the x-axis varies the
regularization coefficient 3. We observe that when the coeffi-
cient, B, is small, the model goes out-of-range often and thus
has poor accuracy. As we increase B, the out-of-range ratio
decreases, and accuracy increases. However, if we increase
the coefficient too much, the accuracy decreases again.

End-to-end Accuracies. We evaluate PILLAR across a
range of different models and architectures considered in
related work [18,31,35]. We summarize the results in Table 1.
We include the accuracy of a model trained with standard
ReLUs as a baseline. All results are averaged over five random
seeds, and we show the 95% confidence interval. The only
exception is ResNet50 on ImageNet, where we only train
a single model due to the size of the dataset. We defer to
Section 6 for the details of the experimental setup. We note
that these results are using PyTorch with no cryptography or
quantization. We give a complete evaluation using MPC in
Section 6 where quantization has an effect. Table | provides
preliminary evidence that our polynomial training approach
yields high accuracies competitive with state-of-the-art ReLU
models across a range of models and datasets.

6 Evaluation of Co-Design

In this section, we provide an end-to-end comparison of our
co-design against state-of-the-art solutions in secure inference.
We evaluate the performance of PILLAR and Algorithm 2 us-
ing both ESPN and HoneyBadger as they offer different trade-
offs in the type of pre-computation needed and the size of
the communication. We determine the state-of-the-art works
following a recent SoK by Ng and Chow [32]. Specifically,
we consider three solutions on the Pareto front of latency and
accuracy as determined by Ng and Chow. These works are
COINN [18], GForce [31] and CrypTen (CryptGPU) [22,35].
We also evaluate Cheetah [17], a recent work not included in
the SoK. We will evaluate the metrics of latency (or runtime

80

°
_ 750 A :
S
< ¢
g
5 70 :
Q
< m
é A This Work
65 |m COINN [18] 8
¢ GForce [31]
@ CryptGPU [35]
60

| | |
1003 10 10!
Inference Time (s)

Figure 6: Summary of the inference time vs accuracy for each
state-of-the-art approach on the CIFAR-100 dataset in the
WAN (100 ms roundtrip delay).

of a single sample) and encrypted accuracy. We addition-
ally evaluate the communication and number of rounds in
Appendix D. We begin with the experimental setup, then eval-
uate both metrics (runtime and accuracy) against each related
work. Section 6.2 evaluates the ResNet-18 architecture, which
gives our state-of-the-art performance. Section 6.3 evaluates
the VGG-16 architecture, the only architecture GForce evalu-
ates. Section 6.4 considers other ResNets and the MiniONN
architecture following COINN. Finally, in Section 6.5, we
evaluate ImageNet against Cheetah, COINN, and CryptGPU.

Results Summary. We plot a summary of the accuracy and
inference time for CIFAR-100 in Figure 6. For both datasets
(recall Figure 1), we observe that our work always gives
the solution with the fastest inference time by a statistically
significant amount. In terms of accuracy, our work is com-
petitive with the state-of-the-art, but CryptGPU is always the
most accurate as it can infer unmodified plaintext models.
Our solution is faster than CryptGPU by 4 x, GForce by 5x,
and COINN by 18x on average in wide area networks. Our
accuracies are competitive with state-of-the-art and plaintext
solutions and stay stable (no escaping activations) with mod-
els containing up to 110 layers and 23 million parameters.

6.1 Experimental Setup

We develop an experimental setup that follows as closely as
possible to the works we compare to [18,31,35]. We use
CIFAR-10/100 [23] and ImageNet [10], the same common
benchmark datasets as related work. Our model architectures
include: MiniONN [26], VGG [34], and ResNets [16]. This
covers models of depth 7 to 110 layers with the number of
trainable parameters ranging from 0.2 to 23 million.

Implementation Details. All experiments are run on a ma-
chine with 32 CPU cores @ 3.7 GHz and 1 TB of RAM with
two NVIDIA A100 with 80 GB of memory. We simulate net-
work delay by calling the sleep function for the appropriate
time whenever the client and server communicate. We simu-
late the LAN with 0.25 ms roundtrip delay and the WAN with
100 ms, following COINN [18]. We additionally evaluate a
real WAN using AWS instances in Section 6.6. All experi-
ments (except ImageNet) are repeated over multiple random
seeds, and we report the mean and 95% confidence interval
as shaded areas.

For all related work, we run our own benchmarks of their
code unmodified. While results for ResNet32 and MiniONN
appear in the Cheetah paper, there was no source code for
these models so we only evaluate Cheetah on ImageNet. To
use CryptGPU in practice, one must first train a model in Py-
Torch. For ImageNet, PyTorch provides pre-trained models.
However, we will need to train a model for all other architec-
tures and datasets. We simply use the same configurations as
our PolyRelu models but with standard ReLUs. We include
all source code to reproduce our results [1].

Hyperparameters. We introduce five new hyperparameters
associated with our techniques: polynomial degree (1), poly-
nomial approximation range (A), polynomial regularization
range (), polynomial regularization coefficient (), and
polynomial regularization exponent (). The default values
for each are decided by extensive grid searches. These pa-
rameters primarily affect the accuracy and not the inference
time, except for the polynomial degree (n), which has a minor
effect on the communication size (but not the rounds). We
found the optimal quantization-aware polynomial degree ()
to be 4. We found that higher degrees than four increase the
failure probability of truncation with minimal accuracy gains
(Section 4.3). Conversely, lower degrees give lower accuracy
(as shown in Figure 3). The polynomial used in all evaluations
is: 0.31445312 +0.5x 4 0.15625x> — 0.00292969x*.

For all models and datasets, we found a value of y= 10
performs well as it introduces a strong enough incentive for
PolyReLU inputs to stay in range (smaller values did not)
while keeping penalization for values in range practically 0
(if an input x is within range, then Xng <l= (W ~0).
Larger values than this often lead to an infinite penalty term.
We found that a polynomial approximation range A = 5 pro-
vides a good compromise between regularization and quanti-
zation. We found that smaller values of A destroy the accuracy
during training, and larger values use too much precision,
increasing the failure probability. The optimal polynomial
regularization range (A,,) and polynomial regularization co-
efficient (B) vary per model and dataset, although we found
Areg = 4.8 (slightly tighter than A =5) and B =5 x 107> to
be good default values. We use p = 10 during ML training,
but revert to CrypTen’s default precision of p = 16 during
inference in a 64-bit ring.

—— CryptGPU
—— ESPN

—— Honeybadger

N (o)) o

N

Total inference time (s)

0 20 40 60 80 100
Roundtrip delay (ms)

Figure 7: ResNet-18 evaluation on CIFAR-100 (20 runs).

We used Stochastic Gradient Decent as the optimizer with
a learning rate of 0.013 as the default. This includes a Cosine
Annealing Learning Rate Scheduler with Linear Learning
Rate Warmup of 5 epochs and decay 0.01. We use a weight
decay of either 10~ or 5 x 10~* and a momentum of 0.9. We
used a default batch size of 128 and set the default number of
Epochs to 185. For some models, we tuned the learning rate,
number of epochs, and regularization coefficient to achieve
a slightly higher accuracy. We detail hyperparameters in our
source code repository.

6.2 ResNet-18 Architecture

In this section, we use a ResNet-18 architecture as it is the
architecture that yields the best inference time and accuracy
over all CIFAR-10 and CIFAR-100 experiments. For this com-
parison we focus on CryptGPU, which has been shown to be
a state-of-the-art solution [32]. CryptGPU (or CrypTen) [35]
serves as a baseline in all our comparisons including those
against GForce and COINN in Sections 6.3 and 6.4. Nei-
ther COINN nor GForce support the ResNet-18 architecture
evaluated in this section.

Inference Time. We measure the inference time of a sin-
gle input image over varying network delays. The results
are given in Figure 7. We include the result for CIFAR-
100 and omit the plot for CIFAR-10 as it displays similar
trends. We observe that both PILLAR + HoneyBadger and
PILLAR + ESPN outperform CryptGPU with statistical sig-
nificance across all roundtrip delays (as the shaded area does
not overlap). In the WAN (100 ms), this corresponds to a 4 x
speedup over CryptGPU. Furthermore, we find HoneyBad-
ger and ESPN perform similarly as observed in Section 4,
with PILLAR + HoneyBadger having a slight advantage.

—— CryptGPU
—— GForce

—— ESPN
—— Honeybadger

8,

(o)}

N

Total inference time (s)
S

0 20 40 60 80 100
Roundtrip delay (ms)

Figure 8: VGG-16 evaluation on CIFAR-100 (20 runs).

Accuracy. We measure the accuracy of the models on the
testing set both in plain (using PyTorch) and encrypted (using
CrypTen). We give the result in Table 2. First, we observe the
plain and encrypted accuracies are very similar, indicating that
quantization has a minor effect despite not considering this
in training. We find that CryptGPU and PILLAR give similar
accuracies, with CryptGPU performing slightly better, as is
to be expected since they use unmodified activation functions.
However, we argue this slight loss in accuracy is well justified
by the significant decrease in inference time.

Dataset Technique Plain Acc Enc Acc
PILLAR 93.4+0.14 933+0.22

CIFAR-10 CryptGPU 947+ 0.09 94.6 +0.10
PILLAR 749 +0.14 744 +0.31

CIFAR-100 o iGPU 76.6 + 007 766+ 0.13

Table 2: ResNet-18 accuracy comparison (5 runs).

6.3 VGG-16 Architecture

In this section, we compare with GForce, the current state-
of-the-art as shown by Ng and Chow [32]. GForce focused
on a modified VGG-16 [34] architecture and compared it to
all other works (including those using different architectures).
For completeness, we evaluate the VGG-16 architecture us-
ing our techniques, and CryptGPU although we note that the
ResNet-18 architecture outperforms VGG-16 in both infer-
ence time and accuracy. COINN [18] does not give results for
VGG-16, so we exclude it from this section.

Inference Time. Since our work aims to reduce the rounds
needed by binary non-linear layers, we replace the MaxPool

layers in the VGG-16 with AvgPool for all solutions (includ-
ing CryptGPU and GForce). We give the inference times
over various delays in Figure 8. First, we note that GForce
significantly outperforms all other solutions in the LAN. How-
ever, for more realistic high latency networks (>5ms roundtrip
delay), we observe our solutions significantly outperform
GForce (5x speedup in WAN). Once again, our solutions
outperform CryptGPU for all network delays.

Encrypted Accuracy. We recall that we swap the MaxPool
layers for AvgPool layers in the inference time evaluation.
This comes at a cost to accuracy for the VGG architecture.
Thus, to give the best scenario possible for GForce, we con-
sider the accuracy of GForce with MaxPools and our work
with AvgPool. We give the results in Table 3. As expected,
GForce outperforms our work in accuracy (due to the Max-
Pools); however, only by a few percentage points. We train
CryptGPU to use AvgPool and find it also loses a few per-
centage points, confirming our hypothesis that a MaxPool is
necessary for high accuracy in VGG-16. We emphasize that
our ResNet-18 result outperforms GForce’s VGG result in in-
ference time and accuracy. Furthermore, ResNets are a more
popular and compact architecture due to skip-connections.

Dataset Technique Plain Acc Enc Acc
PILLAR 90.8 +£0.11 90.8 £0.14

CIFAR-10 CryptGPU 92.6 £0.16 92.5£0.16
GForce - 93.12
PILLAR 66.3 +0.22 663 £0.32

CIFAR-100 CryptGPU 709 £0.17 70.8 £0.13
GForce - 72.83

Table 3: VGG-16 accuracy comparison (5 runs).

6.4 Other Architectures

While GForce is the current state-of-the-art, COINN is a com-
petitive solution that evaluates ResNet architectures. Thus,
we also evaluate the same configurations as COINN. This
includes the smaller MiniONN architecture, a ResNet-32, and
a ResNet-110. We exclude GForce from this evaluation as
they only evaluate VGG-16 models.

Inference Time. We again swap all MaxPool layers for Avg-
Pool in our work, and CryptGPU but leave COINN unmod-
ified. We give the results in Figure 9. We observe that, over
each of the three increasingly large architectures, the trends
are similar and proportional to the number of parameters (0.2,
0.5, and 1.7 million parameters for MiniONN, ResNet-32,
and ResNet-110, respectively). Across all architectures and
network delays, our work outperforms COINN by a statisti-
cally significant amount (18 x on average in WAN). We once

—— CryptGPU —— ESPN
COINN —— Honeybadger

3.5
©3.0; 0
) o
Eas £
] o
£ 2.01 2
IS <
L1.5 QL
£ £
F 1.0 ®
e e

0.5

0.0

0 20 40 60 80
Roundtrip delay (ms)

100

(a) MiniONN on CIFAR-10

—— CryptGPU —— ESPN
COINN —— Honeybadger
15.0
12.5
10.0
7.5
5.0
2.5 /

0.0

0 20 40 60 80
Roundtrip delay (ms)

100

(b) ResNet-32 on CIFAR-100

—— CryptGPU —— ESPN
COINN —— Honeybadger
_. 501
2
[}
£ 40
E
c 304
IS
Q
£ 201
e
P 101 /
0

0 20 40 60 80
Roundtrip delay (ms)

100

(c) ResNet-110 on CIFAR-10

Figure 9: Evaluating the various COINN architectures (20 runs).

again outperform CryptGPU in all evaluations' with a 4x
speed up on average in the WAN.

Encrypted Accuracy. We give the results in Table 4. We
observe that PILLAR is competitive with related work in all
models, although we remark that, once again, our ResNet-
18 models outperform all others. We also note that, while
COINN does quantization-aware training, PILLAR does not
and still only loses a small amount of accuracy in encryption
vs. plaintext.

Dataset/Model Technique Plain Acc Enc Acc
PILLAR 88.1 £0.26 87.9+0.46
ﬁfﬁé{;}? / CryptGPU 91.2+£0.17 91.2+0.16
COINN - 87.6
PILLAR 914 £0.18 914+0.25
Eﬁfﬁf{.ﬁ? é CryptGPU 928 +£0.27 92.7 £0.26
COINN - 93.4
PILLAR 67.8+0.32 67.8+£047
EEFQR{ ;(;0/ CryptGPU 684 £ 0.46 68.5 £ 0.45
e COINN - 68.1

Table 4: Accuracy comparison on the various architectures
considered in COINN (5 runs).

6.5 Scaling to ImageNet

In this section, we evaluate the scalability of our approach on
the ImageNet dataset using a ResNet-50 architecture with 23
million parameters. This architecture was previously too large

! All of which are statistically significant except MiniONN in LAN where
the confidence intervals overlap slightly.

—— CryptGPU —— ESPN
COINN —— Honeybadger
CHEETAH
200
a
[0} 4
£ 150
[V]
1%}
© 1001
g
£
©
= 501
e //
0

0 20 40 60 80
Roundtrip delay (ms)

100

Figure 10: ImageNet evaluation on ResNet-50 (20 runs).

for training with polynomial activation functions [12]. We
compare our approach to Cheetah, COINN and CryptGPUand
exclude GForce as they do not consider ImageNet.

Inference Time. We plot the inference time in Fig-
ure 10. We observe a significant reduction over Cheetah and
COINN across all network delays. We outperform Cheetah by
39x in the LAN (0.25 ms) and 15x in the WAN (100 ms).
Over COINN, we observe a 28 x reduction in the LAN and
a 90x reduction in the WAN. Compared to CryptGPU we
find that PILLAR + HoneyBadger is the fastest in all network
delays by 3x on average. PILLAR + ESPN is slightly slower
in the LAN, but once again outperforms CryptGPU in the
WAN.

Dataset / Model ESPN HoneyBadger CryptGPU
CIFAR-10/ResNet-110 493 +0.1 49.0+0.1 2425+£09
CIFAR-10/ResNet-18 153 +02 129+0.1 48.9 £ 0.1
CIFAR-100/ResNet-18 154 +02 129+0.1 489+ 0.5
CIFAR-100/ResNet-32 14.1 £0.1 140 £0.1 754+ 1.6
ImageNet / ResNet-50 1539+ 1.0 1049 +0.8 268.67 £ 1.3

Table 6: Real World WAN evaluation. We report total infer-
ence time in seconds.

Encrypted Accuracy. We present a summary of the accu-
racies in Table 5. We note that Cheetah [17] did not measure
accuracy in either their code or paper so we omit them from
this comparison. We observe a much higher encrypted accu-
racy for PILLAR compared to COINN and thus, our solution
is Pareto dominant. For CryptGPU, we use a pre-trained Py-
Torch model with state-of-the-art accuracy. Therefore, as ex-
pected, CryptGPU has an accuracy 3% higher than the model
we trained from scratch. We note that with a higher degree
polynomial, we were able to train a 79.2% polynomial model.
However, this model is not possible to infer in the 64-bit field
used by CrypTen (as higher degrees need more precision by
equation 10). We discuss future directions to further improve
this result in Section 7.

Technique Plain Acc Enc Acc
PILLAR 77.7 77.3
CryptGPU 80.8 80.8
COINN - 73.9

Table 5: ImageNet accuracy comparison (1 run).

6.6 Real WAN Evaluation

This section gives benchmarks for ESPN, HoneyBadger, and
CryptGPU [35] in a real WAN. We use two AWS EC2
g4dn.metal instances, one in the Ohio data centre and one
in Frankfurt, Germany. Each machine has 96 cores, 384 GB
of memory, 100 GB/s network bandwidth, and a NVIDIA T4
GPU. In practice, we measured 10.8MB/s bandwidth between
the two instances. We run all the ResNet architectures and
summarize the results in Table 6. We repeat each experiment
20 times and report the mean and 95% confidence intervals.
We observe similar trends to the simulated WAN used in pre-
vious experiments. Namely, ESPN and HoneyBadger perform
similarly in runtime for most models. The exception is larger
models like ResNet50, where the bandwidth limits impact
ESPN more than HoneyBadger. In all cases, CryptGPU is
significantly outperformed by both approaches.

7 Discussion

Our experimental evaluation in Section 6 showed our algo-
rithms significantly outperform all related work in WAN in-
ference time. While state-of-the-art compared to other poly-
nomial training approaches, PILLAR still incurs a minor ac-
curacy degradation compared to standard models with ReLUs.
We posit a few directions for future work to further close this
gap between polynomials and ReLUs.

Quantization. Note that aside from our quantization-aware
polynomial fitting described in Section 5, we have made no
efforts to reduce the effects of quantization. COINN devel-
oped training algorithms to help the model be robust to the
overflow and quantization present in MPC [18]. An interest-
ing future work would be to combine the COINN methods
with PILLAR to see if further accuracy gains are possible.

Precision. By using CrypTen as our backend, we were lim-
ited to a 64-bit ring for cryptographic operations. As dis-
cussed in Section 4.3, this precision determines the degree
and range of polynomials we can use (due to either the failure
probability of truncation or severe truncation of intermediate
values). Interesting future work is to increase this precision to
enable higher-degree polynomials and study the performance-
accuracy trade-off. Our initial results on ImageNet show that
we can train up to a degree eight polynomial without suffering
escaping activations. However, we could not increase the ring
size to study the effect of higher degrees on inference time.

MaxPools. We recall that a MaxPool layer requires compar-
isons and, thus, expensive conversions to binary shares (like
ReLUs). Therefore, we replaced all MaxPools with AvgPool
layers. However, in some architectures, such as VGG-16 [34],
we found that swapping MaxPool for AvgPool degraded accu-
racy by up to 6%. Finding an efficient MaxPool alternative for
architectures like VGG is important for future work. However,
since the ResNet models give high accuracy using AvgPool
layers we did not pursue this issue further.

8 Related Work

This work focuses on achieving state-of-the-art run time and
accuracy in two-party secure inference. We measure this ob-
jective by evaluating against the current state-of-the-art as de-
termined by a recent SoK by Ng and Chow [32]. Namely, we
compare to COINN [18], GForce [31] and CrypTen [22,35]
in Section 6 as they represent the Pareto front according to
Ng and Chow [32]. Another potential candidate on the Pareto
front is Falcon [25], with low latency and accuracy [25]. We
did not evaluate Falcon as the accuracy drop was too sig-
nificant (over 10% [32]). Furthermore, GForce is shown to

outperform Falcon in both latency and accuracy, and we out-
perform GForce [31]. For a complete list of other works not
on the Pareto front, we defer to Ng and Chow’s work [32].
Notably, many works consider different threat models or use
different approaches, such as homomorphic encryption. We
leave extending our polynomial activation functions to these
settings for future work. For the remainder of this section,
we discuss works with a similar approach to ours that are not
state-of-the-art or not evaluated by Ng and Chow [32].

Replacing or Reducing ReLLU’s. It has been established
that the non-linear functions such as ReL.U are the bottle-
neck for secure computation [12, 13, 18,29]. Several works
initially focused on reducing the number of ReLU activa-
tions, optimizing for the best trade-off between accuracy and
runtime [13,20]. A faster approach is to replace all ReLU’s en-
tirely using polynomial approximations [12]. In Section 5, we
discussed the most recent work in this space, Sisyphus [12].
While making significant progress toward training models
with polynomial activations, Sisyphus could not overcome
the escaping activation problem for models with more than
11 layers. Before Sisyphus, there were a handful of works
on smaller models that typically focus on partial replacement
(some ReLLU’s remained) [14,29,30]. An interesting excep-
tion from Lee et al. used degree 29 polynomials in HE but
suffered prohibitively high runtimes [24]. Our work is the first
to make high-accuracy polynomial training feasible (without
escaping activations) in deep neural networks.

A notable recent work is PolyKervNets [3]. Inspired by
the computer vision literature, PolyKervNets remove the acti-
vation functions and instead exponentiate the output of each
convolutional layer [3]. The problem with this approach is
that, similar to polynomial activation functions, the exponents
make the training unstable. Aremu and Nandakumar note that
exploding gradients prevent their approach from scaling to
ResNet models deeper than ResNet18 (using degree 2 poly-
nomials). Furthermore, PolyKervNets only allow for a single
fully connected layer which reduces the accuracy of the mod-
els. Conversely, PILLAR scales to deeper models such as
ResNet110 and much higher degrees. Moreover, we achieve
significantly better plaintext accuracy on ResNet-18 (93.4 vs
90.1 on CIFAR-10 and 74.9 vs 71.3 on CIFAR-100).

Polynomial Evaluation in MPC. Our work focuses on co-
designing the activation functions with cryptography by using
polynomials. However, the problem of computing polyno-
mials in MPC is of independent interest and has also been
studied in the literature. The state-of-the-art in this space is
HoneyBadger, as discussed in Section 4. Other notable works
include the initial inspiration for HoneyBadger from Damgard
et al. [8]. This early approach conducts exponentiation by
blinding and reconstructing the number to be exponentiated
so the powers can be computed in plaintext [8]. Building off
this idea, Polymath constructs a constant round protocol for

evaluating polynomials focused on matrices [27]. However,
HoneyBadger outperforms Polymath by reducing both the
rounds and the number of reconstructions to one.

9 Conclusion

In this work, we co-designed the ML and MPC aspects of
secure inference to remove the bottleneck of non-linear layers.
PILLAR maintains a competitive inference accuracy while
being significantly faster in wide area networks using novel
single round MPC protocols (ESPN and HoneyBadger). Our
state-of-the-art inference times motivate future work to further
improve the ML accuracy of polynomial activations in DNNSs.

Acknowledgements

We gratefully acknowledge the support of the Natural Sci-
ences and Engineering Research Council (NSERC) for grants
RGPIN-05849, and IRC-537591, the Royal Bank of Canada,
and Amazon Web Services Canada.

Availability

We make all source code to reproduce our experi-
ments available here: https://github.com/LucasFenaux/
PILLAR-ESPN.

References

[1] https://github.com/LucasFenaux/PILLAR-ESPN.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep Learning with Differential Privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS °16, pages 308-318,
New York, NY, USA, October 2016. Association for
Computing Machinery.

[3] Toluwani Aremu and Karthik Nandakumar. PolyK-
ervNets: Activation-free Neural Networks For Efficient
Private Inference. In First IEEE Conference on Secure
and Trustworthy Machine Learning, February 2023.

[4] Donald Beaver. Foundations of secure interactive com-
puting. In Advances in Cryptology — CRYPTO 1991,
pages 377-391, 1991.

[5] Michael Ben-Or, Shafi Goldwasser, and Avi Wigder-
son. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proceedings
of the Twentieth Annual ACM Symposium on Theory
of Computing, STOC ’88, pages 1-10, New York, NY,
USA, January 1988. Association for Computing Ma-
chinery.

https://github.com/LucasFenaux/PILLAR-ESPN
https://github.com/LucasFenaux/PILLAR-ESPN
https://github.com/LucasFenaux/PILLAR-ESPN

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Octavian Catrina. Round-Efficient Protocols for Secure
Multiparty Fixed-Point Arithmetic. In 2018 Interna-
tional Conference on Communications (COMM), pages
431-436, June 2018.

Octavian Catrina and Sebastiaan de Hoogh. Improved
Primitives for Secure Multiparty Integer Computation.
In Juan A. Garay and Roberto De Prisco, editors, Secu-
rity and Cryptography for Networks, Lecture Notes in
Computer Science, pages 182—199, Berlin, Heidelberg,
2010. Springer.

Ivan Damgard, Matthias Fitzi, Eike Kiltz, Jesper Buus
Nielsen, and Tomas Toft. Unconditionally Secure
Constant-Rounds Multi-party Computation for Equality,
Comparison, Bits and Exponentiation. In Shai Halevi
and Tal Rabin, editors, Theory of Cryptography, Lec-
ture Notes in Computer Science, pages 285-304, Berlin,
Heidelberg, 2006. Springer.

Daniel Demmler, Thomas Schneider, and Michael
Zohner. ABY - A Framework for Efficient Mixed-
Protocol Secure Two-Party Computation. In Proceed-
ings 2015 Network and Distributed System Security Sym-
posium, San Diego, CA, 2015. Internet Society.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248-255, June
2009.

Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. Improved Primitives for MPC
over Mixed Arithmetic-Binary Circuits. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, Advances in
Cryptology — CRYPTO 2020, Lecture Notes in Com-
puter Science, pages 823-852, Cham, 2020. Springer
International Publishing.

Karthik Garimella, Nandan Kumar Jha, and Brandon
Reagen. Sisyphus: A Cautionary Tale of Using Low-
Degree Polynomial Activations in Privacy-Preserving
Deep Learning, November 2021.

Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon
Reagen, and Siddharth Garg. CryptoNAS | Proceed-
ings of the 34th International Conference on Neural
Information Processing Systems. Advances in Neu-
ral Information Processing Systems, 33:16961-16971,
2020.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine,
Kristin Lauter, Michael Naehrig, and John Wernsing.
CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In Proceed-
ings of The 33rd International Conference on Machine
Learning, pages 201-210. PMLR, June 2016.

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

Oded Goldreich. Foundations of Cryptography: Basic
Applications, volume 2. Cambridge university press,
2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770-778, 2016.

Zhicong Huang, Wen jie Lu, Cheng Hong, and Jian-
sheng Ding. Cheetah: Lean and fast secure Two-Party
deep neural network inference. In 31st USENIX Secu-
rity Symposium (USENIX Security 22), pages 809-826,
Boston, MA, August 2022. USENIX Association.

Siam Umar Hussain, Mojan Javaheripi, Mohammad
Samragh, and Farinaz Koushanfar. COINN: Crypto/ML
Codesign for Oblivious Inference via Neural Networks.
In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, CCS 21,
pages 3266-3281, New York, NY, USA, November 2021.
Association for Computing Machinery.

Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. High accuracy
and high fidelity extraction of neural networks. In 29th
USENIX Security Symposium (USENIX Security 20),
SEC’20, pages 1345-1362, USA, August 2020.

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and
Brandon Reagen. DeepReDuce: ReLLU Reduction for
Fast Private Inference. In Proceedings of the 38th In-

ternational Conference on Machine Learning, pages
4839-4849. PMLR, July 2021.

Marcel Keller, Emmanuela Orsini, and Peter Scholl.
Mascot: Faster malicious arithmetic secure computa-
tion with oblivious transfer. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 16, page 830-842, New York,
NY, USA, 2016. Association for Computing Machinery.

Brian Knott, Shobha Venkataraman, Awni Hannun,
Shubho Sengupta, Mark Ibrahim, and Laurens van der
Maaten. CrypTen: Secure Multi-Party Computation
Meets Machine Learning. In Advances in Neural In-
formation Processing Systems, volume 34, pages 4961—
4973. Curran Associates, Inc., 2021.

Alex Krizhevsky et al. Learning multiple layers of
features from tiny images. 2009.

Junghyun Lee, Eunsang Lee, Joon-Woo Lee, Yongjune
Kim, Young-Sik Kim, and Jong-Seon No. Precise Ap-
proximation of Convolutional Neural Networks for Ho-
momorphically Encrypted Data, June 2021.

[25] Shaohua Li, Kaiping Xue, Bin Zhu, Chenkai Ding, Xindi
Gao, David Wei, and Tao Wan. FALCON: A Fourier
Transform Based Approach for Fast and Secure Convo-
lutional Neural Network Predictions. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8705-8714, 2020.

[26] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivi-
ous Neural Network Predictions via MiniONN Trans-
formations. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’17, pages 619-631, New York, NY, USA, October
2017. Association for Computing Machinery.

[27] Donghang Lu, Albert Yu, Aniket Kate, and Hemanta
Maji. Polymath: Low-Latency MPC via Secure Poly-
nomial Evaluations and Its Applications. Proceedings
on Privacy Enhancing Technologies, 2022(1):396-416,
January 2022.

[28] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha,
Rahul Govind, Aniket Kate, and Andrew Miller. Honey-
BadgerMPC and AsynchroMix: Practical Asynchronous
MPC and its Application to Anonymous Communica-
tion. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
’19, pages 887-903, New York, NY, USA, November
2019. Association for Computing Machinery.

[29] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. Delphi: A
Cryptographic Inference Service for Neural Networks.
In 29th USENIX Security Symposium (USENIX Security
20), pages 2505-2522, 2020.

[30] Payman Mohassel and Yupeng Zhang. SecureML: A
System for Scalable Privacy-Preserving Machine Learn-
ing. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 19-38, May 2017.

[31] Lucien K. L. Ng and Sherman S. M. Chow. {GForce}:
{GPU-Friendly} Oblivious and Rapid Neural Network
Inference. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2147-2164, 2021.

[32] Lucien K. L. Ng and Sherman S. M. Chow. SoK: Cryp-
tographic Neural-Network Computation. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 497—
514, May 2023.

[33] Deevashwer Rathee, Thomas Schneider, and K. K.
Shukla. Improved multiplication triple generation over
rings via rlwe-based ahe. In Yi Mu, Robert H. Deng,
and Xinyi Huang, editors, Cryptology and Network Secu-
rity, pages 347-359, Cham, 2019. Springer International
Publishing.

[34] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition, April 2015.

[35] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu.
CryptGPU: Fast Privacy-Preserving Machine Learning
on the GPU. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1021-1038, May 2021.

[36] Florian Tramer, Fan Zhang, Ari Juels, Michael K. Re-
iter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In 25th USENIX Security
Symposium (USENIX Security 16), volume 16, pages
601-618, 2016.

A Evaluation of BatchNorm with Polynomials

Without BatchNorm With BatchNorm

88.77 £ 0.11 90.05 £ 0.16
82.99 £ 0.42 87.37 £ 0.13

Normal Relu
PolyRelu

Table 7: Comparing the effect of BatchNorm on MiniONN
model.

To study the effect of a batch norm layer on our training
process, we train a standard ReLU model and a model with
polynomial activations both with and without batch norm lay-
ers. We use the MiniONN architecture and give the results
averaged over three random seeds with 95% confidence in-
tervals in Table 7. We find that batch norm layers improve
both models. However, the improvement due to using batch
norm is significantly greater when using polynomial activa-
tion functions. This is an intuitive result as batch norm helps
keep each layer’s output bounded and thus reduces the work
of our regularization function.

B Evaluation of Sigmoid with Polynomials

ReLU Sigmoid

94.7+0.08 90.2+0.11
934+0.16 859=£0.11

Standard Activation
Polynomial Approx.

Table 8: Comparing the effect of the activation function on a
ResNet18 model.

In this work, we focus on the ReLLU activation function, the
default in common architectures such as ResNets [16]. An-
other reason we focus on ReLU is that it gives better accuracy
than alternatives like Sigmoid. In this section, we highlight
this accuracy advantage by the accuracy of a ResNet18 model
with different activation functions. In Table 8, we evaluate

both ReLU and Sigmoid with and without using polynomial
approximation. In all cases, we use the ResNet18 architecture
with default parameters given in Section 6.1, we note the poly-
nomial is of degree n = 4. The results are averaged over five
random seeds and shown with 95% confidence intervals. We
find that ReLLU consistently outperforms Sigmoid with and
without using polynomial evaluations. However, the accuracy
of Sigmoid decreases more, relative to ReLU, when using
polynomial approximation. This result further motivates our
use of ReLU. We leave further investigation of Sigmoid and
other activations for future work.

C Quantization Aware Polynomial Fitting

—— RelU
6 naive truncation
—— quantization-aware
41
X
2,
0,
-4 2 0 2 4
X

Figure 11: The effect of truncation on a polynomial activation
function.

In Figure 11, we plot the polynomial approximation with
and without our quantize-aware fitting approach described
in Section 5. 1. First, we plot the polynomial approximation
after truncation and see that it diverges from a true ReLU. We
also plot our quantized polynomial fitting and show that it
addresses the problems of exploding activations within the
range.

Polynomial Input Distribution After Regularization We
plot the histogram of the input to all activation functions of a
ResNet 18 model on CIFAR-10 in Figure 12.

D Communication and Rounds Benchmark

We study two additional evaluation metrics of rounds and
communication in this section. Recall that the number of
rounds significantly affects the protocol latency over WAN.
The communication affects each round’s throughput, depend-
ing on the network bandwidth. In Table 9, we summarize the
communication in GB and the number of rounds (shown in
parenthesis) for our work and the related work we compare
to in Section 6. We note that both COINN and GForce do not

1e7 Histogram

Figure 12: Polynomial Input Distribution of ResNetl18 on
CIFARI10.

log the communication or rounds in their code base. Thus, we
report their communication numbers from the corresponding
tables in the papers (COINN [18, Table 3] and GForce [31, Ta-
ble 7]). Neither work evaluates the number of rounds.

In all cases, ESPN and HoneyBadger significantly domi-
nate all evaluated related work in the number of rounds with a
3 — 5x improvement. The communication of ESPN and Hon-
eyBadger is significantly less than COINN, approximately
the same as CryptGPU, and more than GForce and Cheetah.
Our HoneyBadger solution has approximately 2x the com-
munication of Cheetah, but Cheetah has 10x the rounds; thus,
in practice, HoneyBadger gives much better performance as
shown in Section 6. GForce has an impressively low com-
munication online (SOMB) due to offloading 20GB of com-
munication to an offline phase. Once again, despite having
higher communication, we recall that both ESPN and Hon-
eyBadger dominate related work in runtime in the WAN (as
shown in Section 6).

E Correctness Proofs

We begin by proving the correctness of Algorithm 1.

Theorem E.1. Given an input [[x]] = xa + xp and exponent k,
Algorithm 1, correctly returns [[x"])].

Proof. We begin with party A. In line 4, they compute their
share of the vector a where a; = x/ljfi (since a was initialized
to zero and the for loop iterates over each entry of a exactly
once). Similarly, in line 5, party B computes their share of b
where b; = (f)x}; We recall that party B’s share of a is the
zero vector, and similarly for party A’s share of b Then, the
vector p is obtained by multiplying a and b element wise in
line 6. Thus, p; = a;-b; = xf"i(/;)x%. The final step (line 7),
simply sums p. Therefore,

k k k o
s = Zpl = Z (i)xf‘lx}g (8)
i=1

i=1

Dataset Model ESPN HoneyBadger CryptGPU COINN GForce Cheetah

ResNet-18 0.46 (38) 0.23 (38) 0.45 (174) / / /

CIFAR-10 ResNet-110 0.55 (221) 0.13 (221) 0.53 (1093) 6.8 / /
VGG-16 0.32 (31) 0.26 (31) / / 0.050 /

ResNet-18 0.46 (38) 0.23 (38) 0.45 (174) / / /

CIFAR-100 ResNet-32 0.16 (65) 0.037 (65) 0.15 (313) 1.9 / /
VGG-16 0.32 (31) 0.26 (31) / / 0.050 /

ImageNet ResNet-50 7.85 (160) 4.04 (160) 7.70 (552) 122.0 / 2.36 (1042)

Table 9: Evaluation of communication in GB and the number of rounds (shown in parenthesis).

which applying the binomial theorem (2) gives (x4 +xp)* =

(] O

Given the correctness of Algorithm |, we now prove the
correctness of Algorithm 2. To begin, we bound the failure
probability of each truncation step in Algorithm 2.

Theorem E.2. Consider computing a degree n polynomial
fitted to the range [—\,). Let the global precision (size of
the ring) be L-bit and the working precision of each value be
p-bit. Then, the truncation in line 5 of Algorithm 2, fails (The
local division of [[x]a, [x|g] %275 # [[x*27]]) with probability
at most

2 lloga M +1+p

7L

Proof. Consider the first truncation of Algorithm 2 in line 5.
The input to this truncation is x which we assume is contained
in the range [—A, L) with a working precision of p-bits. There-
fore, the size of x is 2/1°2*1+1 in the integer part and 27 in
the decimal part. Which gives, |x| < 2[°2*+1+7_Given that
we are working in a L-bit ring and the probability of failure
of the truncation protocol is bounded by |x|/Q where Q is the
ring size [22], the result follows. O

Pr[Line 5 Failure] <)

Theorem E.3. Consider computing a degree n polynomial
fitted to the range [—\, \). Let the global precision (size of the
ring) be L-bit and the working precision of each value be p-bit.
Then, the truncation in line 7 of Algorithm 2 fails (The lo-
cal division of [[x]a, [x]g] ¥ 2 P*= AT oL [[x s 2~ PHi=D)+57]])
with probability at most

2i([logy A]+1)+2p

Pr|[Line 7 Failure] < 5L

(10)

where i is the power of x being truncated (i < n).

Proof. Consider the truncation in line 7 of Algorithm 2. The
input to this truncation is the output of the previous trunca-
tion in line 5, raised to the power i. We assume the previous
truncation was correct. Then after the truncation,

2[log2 Al+1+p
2[(i=2)p/il

2[logy A]+1+p
2(i=2)p/i

(1)

xi| =

fori € {2,...,n}, where the inequality holds because (i —
2)p/iis positive. After applying the exponentiation by i we
get |p;| < 2i([loe2A+D+2r_Given that we are working in a L-
bit ring and the probability of failure of the truncation protocol
is bounded by |x|/Q where Q is the ring size [22], the result
follows. O

Theorem E.4. Given an input [[x]] = xa +xp and polynomial
coefficients o, Algorithm 2, correctly returns the polynomial
evaluation [[Y.1_ a; - X']| except with probability.

i 2i([log2M+l)+2p_~_2[10g27»'\+1+p)

Pr|Alogrithm 2 Fails) < =2 5

Proof. First, prove correctness assuming the truncation oper-
ators are correct (then we will account for the probability of
failure). We begin by proving that p{ = x' fori € {1,...,n}
after line 7. We note that x is actually x * 27 due to the fixed
point encoding. py follows trivially. For i € {2,...,n}, we
work backwards, from line 7 to line 4 expanding the defini-
tion of p;

pi = pix2 D (12)
_ (xg)i*zfp*(ifl)Jrﬁ-i (13)
_ (x_zp.z—f)i*z—p*(i—l)+5_~i (14)
= X2 (15)

where the first lines, up to (14), come from the substitution
of lines 7 through 5, respectively. The remaining step follows
from basic algebra.

Finally, we bound the failure probability of the algorithm.
The truncation steps in line 5 and line 7 each introduce a possi-
bility of wrap around error. Each truncation is executed n — 1
times. Thus, applying the bounds derived in Theorem E.2
and Theorem E.3 for each i in the for loop, the total failure
probability follows. O

	Introduction
	Background
	Multi Party Computation
	Neural Network Inference

	Problem Setup and Motivation
	Problem Setup
	Privacy During Model Training
	Motivating the Co-Design of Activation Functions

	Faster Evaluation of Polynomials
	The Polynomial Advantage
	ESPN: Exponentiating Secret Shared Values using Pascal's triangle
	Polynomial Evaluation with ESPN
	Alternative Single Round Protocol: HoneyBadger

	PILLAR: Polynomial Activation Regularization
	The Problem with Polynomial Activation Functions
	Defining PILLAR
	Measuring PILLAR's Effectiveness

	Evaluation of Co-Design
	Experimental Setup
	ResNet-18 Architecture
	VGG-16 Architecture
	Other Architectures
	Scaling to ImageNet
	Real WAN Evaluation

	Discussion
	Related Work
	Conclusion
	Evaluation of BatchNorm with Polynomials
	Evaluation of Sigmoid with Polynomials
	Quantization Aware Polynomial Fitting
	Communication and Rounds Benchmark
	Correctness Proofs

