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Abstract. iMOACORg is an ant colony optimization algorithm designed
to tackle multi-objective optimization problems in continuous search
spaces. It is built on top of ACOg and uses the R2 indicator (to improve
its performance on high-dimensional objective function spaces) to rank
the pheromone archive of the best previously-explored solutions. Due to
the utilization of an R2-based selection mechanism, there are typically
a large number of tied-ranks in iMOACOg’s pheromone archive. It is
worth noting that the solutions of a specific layer share the same im-
portance based on the R2 indicator. A critical issue due to the large
number of tied-ranks is a reduction of the algorithm’s exploitation abil-
ity. In consequence, in this paper, we propose replacing iMOACOR’s
probabilistic solution selection mechanism with a mechanism tailored to
these layer-sets. Our proposed layer-set selection uses rank-proportionate
(roulette wheel) selection to select a layer, with all the solutions in the
layer sharing equally in the layer’s probability. Our experimental eval-
uation indicates that our proposal, which we call iMOACOg, performs
better than iIMOACOR to a statistically significant extent on a large
number of benchmark problems having from 3 to 10 objective functions.

1 Overview

Multi-objective optimization problems (MOP) [3,16] are a class of problems that
require the simultaneous optimization of multiple objective functions which are
mutually conflicting. Due to this conflict, the solution of a MOP is composed
of a set of solutions that represent the best possible trade-offs among the ob-
jective functions. The bio-inspired metaheuristics are promising techniques to
solve MOPs. Among these techniques, those based on the behavior of colonies of
ants have recently attracted the attention of the community to solve continuous
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MOPs. iMOACORg [7] is an ant colony algorithm [6] for multi-objective optimiza-
tion in continuous spaces, and is designed specifically for problems with four or
more objective functions. IMOACOR uses the R2 indicator [2] to rank solutions,
and is built on top of ACOg [13], a well-established ant colony algorithm for
continuous-domain optimization.

As a consequence of using an R2-based selection mechanism, there are typ-
ically a large number of tied-ranks in iMOACOg’s archived population. A tie
would require the fitness function values for two archived solution to be exactly
the same, which is unlikely to happen very often in a typical real optimization
problem with a real-valued objective function. For this reason, the handling of
tied ranks is not a very important issue for most single-objective optimization
applications of ACOg, and does not seem to have received much attention in the
literature. However, in iMOACORg, the archive is typically made up of a number
of layers, with the set of solutions at each layer having the same R2 indicator
value. The number of distinct layers can be much smaller than the population
size. For example, we have found that in a population of 220 solutions, it is
not uncommon for the number of layer-sets (distinct ranks) to be no more than
50 for most of the computation. The problem is that tied ranks smooth out
the probability distribution used for selection. This results in an algorithm with
lower exploitation than the same algorithm with a uniquely ranked population.

In this paper, we propose replacing iMOACOR’s probabilistic solution selec-
tion mechanism with a mechanism tailored to layer-sets. Our proposed layer-set
selection mechanism uses roulette wheel selection to select a layer, with all the
solutions in the layer sharing equally in the layer’s probability. We evaluate our
proposal with respect to standard iIMOACOg using the same suite of problems
and experimental settings adopted in [7]. Our results indicate that our proposal,
which we call IMOACOg, performs better than standard iMOACOg to a sta-
tistically significant extent in several state-of-the-art benchmark problems, with
the number of objective functions varying from 3 to 10.

2 Background

The unconstrained multi-objective optimization problem is mathematically de-
fined as follows: min,cq f(x) := [fi(z), fo(z),. .., fm(a:)]T, where z € (2 is an
n-dimensional vector of decision variables and 2 C R" is the decision space.
fi: 2 —=>R,i=1,...,m are the objective functions. When solving a MOP, the
aim is to find in {2 a subset of solutions x* that yield the optimum values for all
the objective functions (i.e., the particular set that represents the best possible
trade-offs among the objective functions). In furtherance of determining which
solutions are optimal, the most common binary order relation used in multi-
objective optimization is the Pareto dominance relation. Given two vectors of
decision variables z,y € (2, we say that © dominates y (denoted by = < y) if
fi(z) < fi(y) for i = 1,...,m and there exists at least an index j € {1,...,m}
such that f;(z) < f;(y). Based on the Pareto dominance relation, we say that
a vector of decision variables x* € {2 is Pareto optimal if there does not exist
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another x € (2 such that x < z*. The set that contains all the Pareto optimal
solutions is known as the Pareto Optimal Set and its image in the objective
functions space is known as the Pareto Front.

In order to assess the performance of MOEAs, a wide variety of quality in-
dicators (QIs) have been proposed in the specialized literature [17]. Among the
plethora of available QIs, the most relevant are those that assess the convergence
of a Pareto front approximation to the true Pareto front PF*. One of these QIs
is the discrete unary R2 indicator [2] that assesses the convergence of an ap-
proximation set A (containing a finite set of objective vectors that approximate
PF*), using scalarizing functions. The discrete unary R2 indicator is defined as
follows:

R2(A, W) |W| Z max{u, (a) (1)
where W is a set of m-dimensional convex Welght vectors and u,, : R™ — Ris a
scalarizing function, parameterized by w € W, that assigns a real value to each
objective vector in A.

3 The iMOACOg Algorithm

In 2017, Falcén-Cardona and Coello Coello proposed the indicator-based many-
objective ant colony optimizer for continuous search spaces (iMOACOg) [7]
which is based on the ACOg [13-15] search engine. The most important el-
ement of every ACO-based algorithm is the design of the pheromone matrix
since it stores knowledge throughout the search process to solve the optimiza-
tion problem [6]. The pheromone matrix of ACOg is an archive that stores the
best N solutions found so far and it sorts them according to the quality of
the objective function. However, this scheme cannot be directly implemented in
iMOACORg since the Pareto dominance relation does not establish a total order.
Hence, Falcén-Cardona and Coello Coello proposed to use the R2 indicator [2]
to transform the multi-objective problem into a single-objective one and, thus,
imposing a total order. For this purpose, the R2-ranking algorithm [10] was em-
ployed to rank the population in a similar fashion to the nondominated sorting
algorithm [5] and, then, the best N solutions are stored according to the rank
assigned. For each solution z7,j = 1,..., N, the auxiliary fields store its vector
of objective values, the rank assigned and a weight value w;.

For each solution z7 in the archive, let r; denote the rank of z7. At each
iteration, the weights w;,j = 1,..., N are computed using the following formula:

wj =(r; —1;0,gN) (2)

where ¢ > 0 is a parameter that controls the diversification process of the search,

r; denotes the rank of archived solution 27 where a rank of 1 denotes the best
(a=b)?2
solution, and 7(a; b, c) = c\/l%67 2.2 denotes the Gaussian function.

To create new solutions, all £** components of the N solutions are employed
to define a Gaussian-kernel probability density function G*(y) = Z;V:1 w; gf (y) =
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Z;V:l w;v(y; ,ui:, ai), where k = 1,...,n, and G*(y) depends on three parame-
ter vectors: w is the vector of weights associated with the individual Gaussian
functions, py is the vector of means, and oy, is the vector of standard devia-
tions. p = {up, i ....ph } = {zp, 2%, ... 20}, and each o, € oy, is computed

L3
as follows: o] = & Zfi 1 |”’§_‘§’“' , where £ > 0 is a parameter that controls the

convergence rate, simulating the evaporation of pheromones.
After computing the weights, each of the M ants performs n construction

new

steps to create a new solution x"°V, where each component x;;°" is drawn by
sampling the b** Gaussian function that is part of G¥. The index b € {1,..., N}

is selected with probability Pr(select b) = <x*—. Finally, the M newly created

=1 v
solutions compete with the ones in the pheromone matrix to be part of the

pheromone matrix in the next iteration.

4 Our Proposed Approach

In typical continuous-domain single-objective optimization applications of ACOg,
tied ranks in the archive are usually quite rare. For this reason, the handling of
tied ranks is not a very important issue for most single-objective optimization
applications of ACOg, and does not seem to have received much attention in the
literature. But, in iMOACOg, there will typically be many tied ranks since any
set of solutions with the same R2 value will have the same rank. The solution
archive can be thought of as being made up of a number of layers, where each
layer consists of a set of solutions that are tied for the same rank—and thus,
have the same value of w, and the same probability of selection.

We recorded the number of distinct ranks in the population at each iteration
for a single run of iMOACOg on the DTLZ5 problem instance with 10 objectives,
using the experimental settings described in Section 5, and used this data to con-
struct the plot shown in Fig. 1. In this figure, the x-axis represents the iteration
number and the y-axis represents the number of distinct ranks in the population
for that iteration. The figure indicates that for most of the computation, the
number of distinct ranks is around 50 (in a population of size 220). Hence, this
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Fig. 1. Plot of the number of distinct ranks (y-axis) versus iteration number (z-axis),
in a single run of iMOACOR on the DTLZ5 problem instance with (10 objectives).
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is a clear drawback of iIMOACOg that results in a decrease of its exploitation
ability.

We propose iIMOACOg, a variation in which the ACOg’s rank-proportionate
selection mechanism is applied at the level of the layers rather than at the
level of individual solutions, with all the solutions in a given layer sharing the
probability of selection of their layer. Specifically, we propose replacing Eq. (2)
with the following:

’Y(Tj B 17 07 CqR)

N (3)

wj =
where R is the number of distinct ranks in the population, N, is the number
of solutions tied for rank r, and ¢ is an additional parameter that is needed
to compensate for the fact that a value of ¢ that is appropriate for standard
iMOACOg may not be the most appropriate for the modified iMOACOg. (We
use a value of ¢ = 2.)

Eq. (3) computes the weight w; of a solution of rank b (i.e., r; = b). Let us
assume that there is a set of solutions of size N, tied for rank b. All solutions in
that set will have equal weight. That weight is determined first by calculating the
weight of selection of the set (which is the numerator of the formula in Eq. (3)),
then dividing that weight by the size of the set (the denominator Ny).

Consider the following numerical example. Suppose we have a population of
30 solutions, consisting of: 6 solutions tied for rank 1, 4 tied for rank 2, 7 for
rank 3, 6 for rank 4, and 7 for rank 5. Table 1 compares selection probabilities
under iMOACOg and iMOACOj; for this population. Each row corresponds
to a rank layer-set. The first two columns show the rank and the number of
solutions in that rank-set. The next two columns show the individual probability
of selection of each of the solutions at that rank. The last two columns show the
overall probability that one of the solutions in that layer-set will be selected. The
table indicates that the probability of selection of layer 1 is much higher under
iIMOACO%, the probability of selection of layer 2 is similar, and the probability
of subsequent layers is much smaller under iMOACOg and drops rapidly as k
increases.

The rapid decline, under iMOACO%, of the probability of selection of a layer
k, as k increases, is not specific to the given numerical example. In general, if
we define define z; as the ratio of the probability of selection of layer k£ to the

Table 1. Numerical example showing a population of 30 solutions.

layer #sols prob. of sol. prob. of layer
iMOACOg iMOACOg iMOACOR iMOACOg
1 6 0.055 0.134 0.327 0.805
2 4 0.046 0.044 0.185 0.180
3 7 0.034 0.002 0.245 0.015
4 6 0.024 7.4E-05 0.142 4.5E-04
5 7 0.014 7.1E-07  0.101 4.9E-06
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probability of selection of layer 1, then it is possible to obtain

= v(k—1,0,cqR) _ i )
~(0,0, cqR)
indicating that z; decays exponentially with k. This is consistent with the spirit
of ACOg. If we assume that ties in a typical single-objective application of
ACOg are negligibly rare, and define z, for ACOg as the ratio of the probability
of selection of the k*™ best solution in the archive to the probability of selection
of the best solution in the archive, then it is possible to obtain z; = e~
indicating that zj also decays exponentially with k& in ACOg.
In terms of Holland’s classical exploitation-exploration trade-off [11], IMOACOg

is more exploitative (in the same spirit as ACOg) than iMOACOg.

5 Experimental Methodology and Discussion of Results

Our experimental methodology is based on that of Falcén-Cardona and Coello
Coello [7]. We used the test suites Deb-Thiele-Laumanns-Zitzler (DTLZ) [4]
and Walking-Fish-Group (WFG) [12]. For each problem, we set the number of
objective functions (m) to 3, 5, 7, and 10. With m = 3, we set the population
size N to 120, the maximum number of generations G4, to 416, and h to 14;
with m = 5, we set: N = 126, G e = 396, and h = 5; with m = 7: we set
N = 85, Ginaz = 595, and h = 7; with 10 objectives, we set: N = 220, Gpax =
227, and h = 19. Moreover, we set ¢ = 0.1, ¢ = a = 0.5, and ¢ = 0.5. For
each instance, we performed 30 independent runs of each of iMOACOg and
iMOACOg.

In our comparison, performance is assessed with the hypervolume (HV)
indicator [1]. We used the HV implementation of [§], available in [9]. Com-
puting the HV requires that a reference vector be supplied by the user. This
was set to (1,1,...) for DTLZ1, (2,2,...) for DTLZ2 and DTLZ4, (7,7,...) for
DTLZ3, (4,4,...) for DTLZ5, (11,11,...) for DTLZ6, (1,1,...,21) for DTLZ7, and
(3,5,7,...,2m+ 1) for all WFG problems. Occasionally, particularly for DTLZ1
and DTLZ3, the reference vector dominates all the solutions returned by the al-
gorithm under evaluation; in such cases, HV is taken as zero.

We ran iMOACOg and iMOACOj, for 30 independent trials on each of the 64
problem instances in our test suite, and computed the value of the hypervolume
(HV) indicator in each case. Table 2 reports the mean and standard deviation of
HV for each algorithm for each problem instance. In each row, the better mean
HYV value is underlined.

The table indicates that iMOACOg% had better performance on 36 instances,
and worse on 20 instances, with 8 ties. Considering the 28 DTLZ instances alone:
iMOACOg had 13 wins, 7 losses, and 8 ties; for the 36 WFG instances: IMOACOg
had 23 wins, 13 losses, and 0 ties. For the 3-objective instances alone: iMOACOg
had 8 wins, 6 losses, and 2 ties; for the 5-objective instances: 10 wins, 4 losses,
and 2 ties; for the 7-objective instances: 9 wins, 5 losses, and 2 ties; for the 10-
objective: 9 wins, 5 losses, and 2 ties. Thus, iIMOACOg performs better on each
of these subgroups of the test suite.
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Table 2. The mean and standard deviation of HV for the original iIMOACOg and our
proposed modified iMOACO%.

prob. m mean std. dev. prob. m mean std. dev.
mod. orig. mod. orig. mod. orig. mod. orig.
DTLZ1 3 0 0 0 0 WFG2 39.786el 9.744el 7.9e-1 5.5e-1
5 0 0 0 0 59.947e3 9.707e3 1.0e2 9.lel
7 0 0 0 0 7 1.742e6 1.694e6 3.3e4 2.8e4
10 0 0 0 0 10 9.882€9 9.467¢9 2.3e8 1.3e8
DTLZ2 3  7.420  7.420 2.5e-4 3.1e-4  WFG3 3 7.256el 7.245el 2.6e-1 2.5e-1
5 3.165el 3.165el 2.6e-3 2.0e-3 5 5.202e3 5.391e3 2.8¢2 2.5e2
7 1.277e2 1.272¢29.8e-3 14 7 7.793e5 7.839e5 2.8e4 2.0ed
10 1.023e3 1.014e3 4.7e-1 3.0el 10 4.688e9 4.800e9 1.1e8 2.4e8
DTLZ3 3 0 0 0 0 WFG4 3 7.060el 7.067el 3.5e-1 3.5e-1
5 0 0 0 0 57.611e3 7.615e3 1.7e2 1.6e2
7 0 0 0 0 7 1.271e6 1.242e6 4.6e4d 5.led
10 0 0 0 0 10 7.437€9 7.219¢9 3.2e8 3.1e8
DTLZ4 3  7.419 7.4191.1e-39.2e-4 WFG5 3 6.847el 6.831el 7.0e-1 7.1e-1
5 3.164el 3.163el 4.4e-3 5.2e-3 5 4.838e3 4.786e3 2.0e2 1.7e2
7 1.277e¢2 1.265e2 7.1e-3 4.2 7 6.784e5 6.938e5 3.6ed 3.4ed
10 1.024e3 1.003e3 4.0e-3 4.2el 10 4.271e9 4.326e9 1.9e8 2.1e8
DTLZ5 3 5.984el 5.984el 1.0e-2 7.9e-3  WFG6 3 7.425el 7.414el 4.7e-1 3.6e-1
5 9.379¢2 9.374e2  1.59.1e-1 57.201e3 6.674e3 5.9¢2 3.4e2
7 1.434e4 1.438e4 9.3el 1.1e2 7 8.779e5 8.466ed 7.3e4 7.4ed
10 9.291e5 9.362e5 4.7e3 6.3e3 10 4.847e9 4.796e9 3.4e8 2.4e8
DTLZ6 3 1.318e3 1.316e3 3.8e-1 1.3  WFG7 3 7.545el 7.522¢l 2.6e-1 2.6e-1
5 1.562e5 1.568e5 1.6e3 1.0e3 5 7.419e3 7.214e3 2.4e2 2.7e2
7 1.783e7 1.734e7 3.2e5 1.9¢6 7 1.074e6 1.086e6 6.3e4 6.0ed
10 2.425e10 2.386e10 3.7e8 1.4€9 10 6.903€9 6.961€9 3.4e8 2.7e8
DTLZ7 3 1.624el 1.625el 1.0e-16.0e-2  WFG8 3 6.547el 6.541el 5.1e-1 3.0e-1
5 1.259el 1.256el 1.2e-1 1.1e-1 5 5.272e3 5.158e3 3.2e2 2.7e2
7 8278  8.239 1.5e-1 1.9e-1 7 7.571e5 7.797e5 8.2e4 6.8e4
10 2.414  1.464 1.8e-1 7.5e-1 10 5.037€9 5.181€9 5.7e8 4.1e8
WFG1 3 4.420el 4.417el 8.8e-17.0e-1  WFG9 3 6.594el 6.594el 2.5e-1 1.8e-1
5 3.973e3 3.923e3 1.3e2 9.2el 5 5.828e3 5.851e3 4.4e2 4.0e2
7 6.776e5 6.693e5 4.0ed 3.3e4 7 7.405e5 7.114e5 1.3e5 1.0eb
10 3.992e9 3.969¢9 3.8e7 2.le7 10 4.400e9 4.162¢9 5.0e8 3.5e8

A one-tailed Wilcoxon signed-rank test applied to the results of Table 2
produced a p-value of 0.031, indicating a statistically significant difference.

Finally, we note that our proposed layer-set selection mechanism can gener-
ally be applied to other situations where ACOg is used in an application with a
non-negligible frequency of tied-ranks.
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